Volume 4, Issue 2 (Spring 2018)                   Caspian.J.Neurol.Sci 2018, 4(2): 83-90 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rafiee Zadeh A, Ghadimi K, Mohammadi B, Hatamian H, Naghibi S N, Danaeiniya A. Effects of Estrogen and Progesterone on Different Immune Cells Related to Multiple Sclerosis. Caspian.J.Neurol.Sci. 2018; 4 (2) :83-90
URL: http://cjns.gums.ac.ir/article-1-209-en.html
1- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran , rafieezadeh.a@gmail.com
2- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
3- Gynecologist, Department of Gynecology and Obstetrics, School of Medicine, Ahvaz Jondishapur University of Medical Sciences, Ahvaz, Iran
4- Department of Neurology, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
5- Kashani Comprehensive Epilepsy Center, Kashani Hospital, Department of Neurology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
6- MSc. in Physiology, Department of Biology, Isfahan Payam-e-Noor University, Isfahan, Iran
Abstract:   (2355 Views)
Multiple Sclerosis (MS) is a chronic autoimmune disease of young adults with an unknown etiology, but cellular immune responses and inflammation has a pivotal role in this regard. The higher incidence of MS among women indicates the possible involvement of female sex hormones on the disease course. Progesterone and estrogen are the most important sexual hormones in women. They exert different immunomodulatory effects through both nuclear and membrane associated receptors present in different immune cells. The immunological effects include shifting the immune response towards Th2, stimulating Treg production, inhibiting pro-inflammatory cytokine production, prohibiting cell migration into Central Nervous System (CNS), suppressing proinflammatory immune cells, stabilizing the neuronal environment, and promoting neuronal survival, all of which might ameliorate the condition in women suffering from MS. Some clinical trials have reported a correlation between the use of Oral Contraceptives (OCs), which contain estrogen and progesterone, and MS among women. Some of these studies show a positive effect of OC usage on the onset and severity of the disease while others have found no significant impact. In this review, we collected articles published between 1995 and 2017 from PubMed Central and Google Scholar for evaluating effects of estrogen and progesterone on different immune cells related to MS. 
Full-Text [PDF 976 kb]   (1107 Downloads) |   |   Full-Text (HTML)  (1098 Views)  
Type of Study: Review | Subject: Special
Received: 2017/10/30 | Accepted: 2018/02/8 | Published: 2018/04/1

1. Goverman J. Autoimmune T cell responses in the central nervous system. Nat rev Immunol. 2009; 9(6):393-407. [DOI:10.1038/nri2550] [PMID] [PMCID] [DOI:10.1038/nri2550]
2. Hoglund RA, Maghazachi AA. Multiple sclerosis and the role of immune cells. World J Exp Med. 2014; 4(3):27-37. [DOI:10.5493/wjem.v4.i3.27] [PMID] [PMCID] [DOI:10.5493/wjem.v4.i3.27]
3. Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. The Lancet Neurol. 2010; 9(5):520-32. [DOI:10.1016/S1474-4422(10)70064-8] [DOI:10.1016/S1474-4422(10)70064-8]
4. Jalkanen A, Alanen A, Airas L. Pregnancy outcome in women with multiple sclerosis: Results from a prospective nationwide study in Finland. Mult Scler J Exp Transl Clin. 2010; 16(8):950-5. [DOI:10.1177/1352458510372629] [PMID] [DOI:10.1177/1352458510372629]
5. Mannella P, Sanchez AM, Giretti MS, Genazzani AR, Simoncini T. Oestrogen and progestins differently prevent glutamate toxicity in cortical neurons depending on prior hormonal exposure via the induction of neural nitric oxide synthase. Steroids. 2009; 74(8):650-6. [DOI:10.1016/j.steroids.2009.02.011] [PMID] [DOI:10.1016/j.steroids.2009.02.011]
6. Yao J, Chen S, Cadenas E, Brinton RD. Estrogen protection against mitochondrial toxin-induced cell death in hippocampal neurons: antagonism by progesterone. Brain Res. 2011; 1379:2-10. [DOI:10.1016/j.brainres.2010.11.090] [PMID] [PMCID] [DOI:10.1016/j.brainres.2010.11.090]
7. Kipp M, Amor S, Krauth R, Beyer C. Multiple sclerosis: Neuroprotective alliance of estrogen-progesterone and gender. Front Neuroendocrinol. 2012; 33(1):1-16. [DOI:10.1016/j.yfrne.2012.01.001] [PMID] [DOI:10.1016/j.yfrne.2012.01.001]
8. Ghayee HK, Auchus RJ. Basic concepts and recent developments in human steroid hormone biosynthesis. Rev Endocr Metab Disord. 2007; 8(4):289-300. [DOI:10.1007/s11154-007-9052-2] [PMID] [DOI:10.1007/s11154-007-9052-2]
9. Airas L. Hormonal and gender-related immune changes in multiple sclerosis. Acta Neurol Scand. 2015; 132(S199):62-70. [DOI:10.1111/ane.12433] [PMID] [DOI:10.1111/ane.12433]
10. Micevych PE, Kelly MJ. Membrane estrogen receptor regulation of hypothalamic function. J Neuroendocrinol. 2012; 96(2):103-10. [DOI:10.1159/000338400] [DOI:10.1159/000338400]
11. Gustafsson JA. Novel aspects of estrogen action. J Soc Gynecol Invest. 2000; 7(1 Suppl):S8-9. [DOI:10.1016/S1071-5576(99)00060-X] [PMID] [DOI:10.1016/S1071-5576(99)00060-X]
12. Mor G, Sapi E, Abrahams VM, Rutherford T, Song J, Hao XY, et al. Interaction of the estrogen receptors with the Fas ligand promoter in human monocytes. J Immunol. 2003; 170(1):114-22. [DOI:10.4049/jimmunol.170.1.114] [DOI:10.4049/jimmunol.170.1.114]
13. Lang TJ. Estrogen as an immunomodulator. Clin Immunol. 2004; 113(3):224-30. [DOI:10.1016/j.clim.2004.05.011] [PMID] [DOI:10.1016/j.clim.2004.05.011]
14. Voskuhl R, Wang H, Elashoff RM. Why use sex hormones in relapsing-remitting multiple sclerosis?–Authors' reply. Lancet Neurol. 2016; 15(8):790-1. [DOI:10.1016/S1474-4422(16)00129-0] [DOI:10.1016/S1474-4422(16)00129-0]
15. Polanczyk M, Zamora A, Subramanian S, Matejuk A, Hess DL, Blankenhorn EP, et al. The protective effect of 17β-estradiol on experimental autoimmune encephalomyelitis is mediated through estrogen receptor-α. Am J Pathol. 2003; 163(4):1599-605. [DOI:10.1016/S0002-9440(10)63516-X] [DOI:10.1016/S0002-9440(10)63516-X]
16. Cunningham M, Gilkeson G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol. 2011; 40(1):66-73. [DOI:10.1007/s12016-010-8203-5] [PMID] [DOI:10.1007/s12016-010-8203-5]
17. Singh NP, Singh UP, Nagarkatti PS, Nagarkatti M. Prenatal exposure of mice to diethylstilbestrol disrupts T-cell differentiation by regulating Fas/Fas ligand expression through estrogen receptor element and nuclear factor-κB motifs. J Pharmacol Exp Ther. 2012; 343(2):351-61. [DOI:10.1124/jpet.112.196121] [PMID] [PMCID] [DOI:10.1124/jpet.112.196121]
18. Soldan SS, Retuerto AIA, Sicotte NL, Voskuhl RR. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J Immunol. 2003; 171(11):6267-74. [DOI:10.4049/jimmunol.171.11.6267] [PMID] [DOI:10.4049/jimmunol.171.11.6267]
19. Palaszynski KM, Liu H, Loo KK, Voskuhl RR. Estriol treatment ameliorates disease in males with experimental autoimmune encephalomyelitis: Implications for multiple sclerosis. J Neuroimmunol. 2004; 149(1-2):84-9. [DOI:10.1016/j.jneuroim.2003.12.015] [PMID] [DOI:10.1016/j.jneuroim.2003.12.015]
20. Dunn SE, Steinman L. The gender gap in multiple sclerosis: intersection of science and society. JAMA Neurol. 2013; 70(5):634-5. [DOI:10.1001/jamaneurol.2013.55] [PMID] [DOI:10.1001/jamaneurol.2013.55]
21. Young HA, Bream JH. IFN-gamma: Recent advances in understanding regulation of expression, biological functions, and clinical applications. Curr Top Microbiol Immunol. 2007; 316:97-117. [DOI:10.1007/978-3-540-71329-6_6] [PMID] [DOI:10.1007/978-3-540-71329-6_6]
22. Laffont S, Garnier L, Lélu K, Guéry J-C. Estrogen-mediated protection of experimental autoimmune encephalomyelitis: Lessons from the dissection of estrogen receptor-signaling in vivo. Biomed J. 2015; 38(3):194-205. [DOI:10.4103/2319-4170.158509] [PMID] [DOI:10.4103/2319-4170.158509]
23. Polanczyk MJ, Carson BD, Subramanian S, Afentoulis M, Vandenbark AA, Ziegler SF, et al. Cutting edge: Estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J Immunol. 2004; 173(4):2227-30. [DOI:10.4049/jimmunol.173.4.2227] [DOI:10.4049/jimmunol.173.4.2227]
24. Polanczyk MJ, Hopke C, Huan J, Vandenbark AA, Offner H. Enhanced FoxP3 expression and Treg cell function in pregnant and estrogen-treated mice. J Neuroimmunol. 2005; 170(1-2):85-92. [DOI:10.1016/j.jneuroim.2005.08.023] [PMID] [DOI:10.1016/j.jneuroim.2005.08.023]
25. Nordqvist J, Bernardi A, Islander U, Carlsten H. Effects of a tissue-selective estrogen complex on B lymphopoiesis and B cell function. Immunobiol. 2017; 222(8):918-23. [DOI:10.1016/j.imbio.2017.05.013] [PMID] [DOI:10.1016/j.imbio.2017.05.013]
26. You HJ, Kim JY, Jeong HG. 17 beta-estradiol increases inducible nitric oxide synthase expression in macrophages. Biochem Biophys Res Commun. 2003; 303(4):1129-34. [DOI:10.1016/S0006-291X(03)00477-7] [DOI:10.1016/S0006-291X(03)00477-7]
27. Liu HY, Buenafe AC, Matejuk A, Ito A, Zamora A, Dwyer J, et al. Estrogen inhibition of EAE involves effects on dendritic cell function. J Neurosci Res. 2002; 70(2):238-48. [DOI:10.1002/jnr.10409] [PMID] [DOI:10.1002/jnr.10409]
28. Soldan SS, Alvarez Retuerto AI, Sicotte NL, Voskuhl RR. Immune modulation in multiple sclerosis patients treated with the pregnancy hormone estriol. J Immunol. 2003; 171(11):6267-74. [DOI:10.4049/jimmunol.171.11.6267] [DOI:10.4049/jimmunol.171.11.6267]
29. Xie H, Hua C, Sun L, Zhao X, Fan H, Dou H, et al. 17beta-estradiol induces CD40 expression in dendritic cells via MAPK signaling pathways in a minichromosome maintenance protein 6-dependent manner. Arthritis Rheum. 2011; 63(8):2425-35. [DOI:10.1002/art.30420] [PMID] [DOI:10.1002/art.30420]
30. Ito A, Bebo BF, Jr., Matejuk A, Zamora A, Silverman M, Fyfe-Johnson A, et al. Estrogen treatment down-regulates TNF-alpha production and reduces the severity of experimental autoimmune encephalomyelitis in cytokine knockout mice. J Immunol. 2001; 167(1):542-52. [DOI:10.4049/jimmunol.167.1.542] [DOI:10.4049/jimmunol.167.1.542]
31. Whitacre CC. Sex differences in autoimmune disease. Nat Immunol. 2001; 2(9):777-80. [DOI:10.1038/ni0901-777] [PMID] [DOI:10.1038/ni0901-777]
32. Whitacre CC, Reingold SC, O'Looney PA. A gender gap in autoimmunity. Sci. 1999; 283(5406):1277-8. [DOI:10.1126/science.283.5406.1277] [PMID] [DOI:10.1126/science.283.5406.1277]
33. Formby B. Immunologic response in pregnancy. Its role in endocrine disorders of pregnancy and influence on the course of maternal autoimmune diseases. Endocrinol Metab Clin North Am. 1995; 24(1):187-205. [PMID] [DOI:10.1016/S0889-8529(18)30059-8]
34. Matejuk A, Adlard K, Zamora A, Silverman M, Vandenbark AA, Offner H. 17 beta-estradiol inhibits cytokine, chemokine, and chemokine receptor mRNA expression in the central nervous system of female mice with experimental autoimmune encephalomyelitis. Journal of neuroscience research. 2001;65(6):529-42. [DOI:10.1002/jnr.1183] [PMID] [DOI:10.1002/jnr.1183]
35. Czlonkowska A, Ciesielska A, Joniec I. Influence of estrogens on neurodegenerative processes. Med Sci Monit: Int Med J of Exp and Clin Res. 2003; 9(10):RA247-56. [PMID] [PMID]
36. Arvanitis DN, Wang H, Bagshaw RD, Callahan JW, Boggs JM. Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes. J Neurosci Res. 2004; 75(5):603-13. [DOI:10.1002/jnr.20017] [PMID] [DOI:10.1002/jnr.20017]
37. Offner H. Neuroimmunoprotective effects of estrogen and derivatives in experimental autoimmune encephalomyelitis: therapeutic implications for multiple sclerosis. J Neurosci Res. 2004; 78(5):603-24. [DOI:10.1002/jnr.20330] [PMID] [DOI:10.1002/jnr.20330]
38. Takao T, Flint N, Lee L, Ying X, Merrill J, Chandross KJ. 17beta-estradiol protects oligodendrocytes from cytotoxicity induced cell death. J Neurochem. 2004; 89(3):660-73. [DOI:10.1111/j.1471-4159.2004.02370.x] [PMID] [DOI:10.1111/j.1471-4159.2004.02370.x]
39. Zhang Z, Cerghet M, Mullins C, Williamson M, Bessert D, Skoff R. Comparison of in vivo and in vitro subcellular localization of estrogen receptors alpha and beta in oligodendrocytes. J Neurochem. 2004; 89(3):674-84. [DOI:10.1111/j.1471-4159.2004.02388.x] [PMID] [DOI:10.1111/j.1471-4159.2004.02388.x]
40. Khan D, Ansar Ahmed S. The immune system is a natural target for estrogen action: Opposing effects of estrogen in two prototypical autoimmune diseases. Front Immunol. 2016; 6:635. [DOI:10.3389/fimmu.2015.00635] [PMID] [PMCID] [DOI:10.3389/fimmu.2015.00635]
41. Cherradi N, Chambaz EM, Defaye G. Organization of 3 beta-hydroxysteroid dehydrogenase/isomerase and cytochrome P450scc into a catalytically active molecular complex in bovine adrenocortical mitochondria. The Journal of steroid biochemistry and molecular biology. 1995; 55(5-6):507-14. [DOI:10.1016/0960-0760(95)00199-9] [DOI:10.1016/0960-0760(95)00199-9]
42. Bixo M, Johansson M, Timby E, Michalski L, Bäckström T. Effects of GABA active steroids in the female brain with focus on the premenstrual dysphoric disorder. J Neuroendocrinol. 2018; 30(2):e12553. [DOI:10.1111/jne.12553] [DOI:10.1111/jne.12553]
43. Runyon SP, Rogawski M, Cook E, Kepler J, Navarro H, Kaminski R, et al. Androstane and pregnane steroids with potent allosteric GABA receptor chloride ionophore modulating properties. [Internet]. 2014 [Updated 2014 April 03]. Available from: http://www.freepatentsonline.com/20140094619.pdf
44. Thomas P, Pang Y. Membrane progesterone receptors: evidence for neuroprotective, neurosteroid signaling and neuroendocrine functions in neuronal cells. Neuroendocrinol. 2012; 96(2):162-71. [DOI:10.1159/000339822] [PMID] [PMCID] [DOI:10.1159/000339822]
45. Pang Y, Dong J, Thomas P. Characterization, neurosteroid binding and brain distribution of human membrane progesterone receptors delta and {epsilon} (mPRdelta and mPR{epsilon}) and mPRdelta involvement in neurosteroid inhibition of apoptosis. Endocrinol. 2013; 154(1):283-95. [DOI:10.1210/en.2012-1772] [PMID] [PMCID] [DOI:10.1210/en.2012-1772]
46. Stein DG. Brain damage, sex hormones and recovery: A new role for progesterone and estrogen? Trends Neurosci. 2001; 24(7):386-91. [DOI:10.1016/S0166-2236(00)01821-X] [DOI:10.1016/S0166-2236(00)01821-X]
47. Szekeres-Bartho J, Halasz M, Palkovics T. Progesterone in pregnancy; receptor-ligand interaction and signaling pathways. J Reprod Immunol. 2009; 83(1-2):60-4. [DOI:10.1016/j.jri.2009.06.262] [PMID] [DOI:10.1016/j.jri.2009.06.262]
48. Munoz-Cruz S, Togno-Pierce C, Morales-Montor J. Non-reproductive effects of sex steroids: their immunoregulatory role. Curr Top Med Chem. 2011; 11(13):1714-27. [DOI:10.2174/156802611796117630] [PMID] [DOI:10.2174/156802611796117630]
49. Lu J, Reese J, Zhou Y, Hirsch E. Progesterone-induced activation of membrane-bound progesterone receptors in murine macrophage cells. J Endocrinol. 2015; 224(2):183-94. [DOI:10.1530/JOE-14-0470] [PMID] [PMCID] [DOI:10.1530/JOE-14-0470]
50. Druckmann R, Druckmann MA. Progesterone and the immunology of pregnancy. J Steroid Biochem Mol Biol. 2005; 97(5):389-96. [DOI:10.1016/j.jsbmb.2005.08.010] [PMID] [DOI:10.1016/j.jsbmb.2005.08.010]
51. Ivanova-Todorova E, Kyurkchiev DS, Nalbanski A, Timeva T, Shterev A, Kyurkchiev SD. Production and characterization of a novel monoclonal antibody against progesterone-induced blocking factor (PIBF). Journal of reproductive immunology. 2008; 78(2):94-101. [DOI:10.1016/j.jri.2007.12.001] [PMID] [DOI:10.1016/j.jri.2007.12.001]
52. Verthelyi D. Sex hormones as immunomodulators in health and disease. Int Immunopharmacol. 2001; 1(6):983-93. [DOI:10.1016/S1567-5769(01)00044-3] [DOI:10.1016/S1567-5769(01)00044-3]
53. Ivanova E, Kyurkchiev D, Altankova I, Dimitrov J, Binakova E, Kyurkchiev S. CD83 monocyte-derived dendritic cells are present in human decidua and progesterone induces their differentiation in vitro. Am J Reprod Immunol. 2005; 53(4):199-205. [DOI:10.1111/j.1600-0897.2005.00266.x] [PMID] [DOI:10.1111/j.1600-0897.2005.00266.x]
54. Szekeres-Bartho J, Wegmann TG. A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J Reprod Immunol. 1996; 31(1-2):81-95. [DOI:10.1016/0165-0378(96)00964-3] [DOI:10.1016/0165-0378(96)00964-3]
55. Carosella ED, Gregori S, Rouas-Freiss N, LeMaoult J, Menier C, Favier B. The role of HLA-G in immunity and hematopoiesis. Cell Mol Life Sci. 2011; 68(3):353-68. [DOI:10.1007/s00018-010-0579-0] [PMID] [DOI:10.1007/s00018-010-0579-0]
56. Kumar A, Begum N, Prasad S, Aggarwal S, Sharma S. Oral dydrogesterone treatment during early pregnancy to prevent recurrent pregnancy loss and its role in modulation of cytokine production: a double-blind, randomized, parallel, placebo-controlled trial. Fertil Steril. 2014; 102(5):1357-63.e3. [DOI:10.1016/j.fertnstert.2014.07.1251] [DOI:10.1016/j.fertnstert.2014.07.1251]
57. Par G, Bartok B, Szekeres-Bartho J. Cyclooxygenase is involved in the effects of progesterone-induced blocking factor on the production of interleukin 12. Am J Obstet Gynecol. 2000; 183(1):126-30. [DOI:10.1067/mob.2000.105742] [DOI:10.1067/mob.2000.105742]
58. Piccinni MP, Giudizi MG, Biagiotti R, Beloni L, Giannarini L, Sampognaro S, et al. Progesterone favors the development of human T helper cells producing Th2-type cytokines and promotes both IL-4 production and membrane CD30 expression in established Th1 cell clones. J Immunol. 1995; 155(1):128-33. [PMID] [PMID]
59. Hudic I, Fatusic Z, Szekeres-Bartho J, Balic D, Polgar B, Ljuca D, et al. Progesterone-induced blocking factor and cytokine profile in women with threatened pre-term delivery. Am J Reprod Immunol. 2009; 61(5):330-7. [DOI:10.1111/j.1600-0897.2009.00699.x] [PMID] [DOI:10.1111/j.1600-0897.2009.00699.x]
60. Gibson CL, Gray LJ, Bath PM, Murphy SP. Progesterone for the treatment of experimental brain injury; a systematic review. Brain. 2007; 131(2):318-28. [DOI:10.1093/brain/awm183] [PMID] [DOI:10.1093/brain/awm183]
61. Nilsen J, Brinton RD. Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norprogesterone and antagonism by medroxyprogesterone acetate. Endocrinol. 2002; 143(1):205-12. [DOI:10.1210/endo.143.1.8582] [PMID] [DOI:10.1210/endo.143.1.8582]
62. Labombarda F, Gonzalez S, Lima A, Roig P, Guennoun R, Schumacher M, et al. Progesterone attenuates astro- and microgliosis and enhances oligodendrocyte differentiation following spinal cord injury. Exp Neurol. 2011; 231(1):135-46. [DOI:10.1016/j.expneurol.2011.06.001] [PMID] [DOI:10.1016/j.expneurol.2011.06.001]
63. Ghoumari AM, Baulieu EE, Schumacher M. Progesterone increases oligodendroglial cell proliferation in rat cerebellar slice cultures. Neurosci. 2005; 135(1):47-58. [DOI:10.1016/j.neuroscience.2005.05.023] [PMID] [DOI:10.1016/j.neuroscience.2005.05.023]
64. Zawadzka M, Franklin RJ. Myelin regeneration in demyelinating disorders: new developments in biology and clinical pathology. Curr Opin Neurol. 2007; 20(3):294-8. [DOI:10.1097/WCO.0b013e32813aee7f] [PMID] [DOI:10.1097/WCO.0b013e32813aee7f]
65. Ghoumari AM, Ibanez C, El-Etr M, Leclerc P, Eychenne B, O'Malley BW, et al. Progesterone and its metabolites increase myelin basic protein expression in organotypic slice cultures of rat cerebellum. J Neurochem. 2003; 86(4):848-59. [DOI:10.1046/j.1471-4159.2003.01881.x] [PMID] [DOI:10.1046/j.1471-4159.2003.01881.x]
66. Hughes GC. Progesterone and autoimmune disease. Autoimmun Rev. 2012; 11(6-7):A502-A14. [DOI:10.1016/j.autrev.2011.12.003] [PMID] [PMCID] [DOI:10.1016/j.autrev.2011.12.003]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2021 CC BY-NC 4.0 | Caspian Journal of Neurological Sciences

Designed & Developed by : Yektaweb