Volume 3, Issue 4 (Autumn 2017)                   Caspian J Neurol Sci 2017, 3(4): 185-195 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Taherian R, Arabahmadi M, Taherian M. Investigation of the Effect of Cycloserine on Motor Function in a Rat Model of Parkinson’s disease. Caspian J Neurol Sci 2017; 3 (4) :185-195
URL: http://cjns.gums.ac.ir/article-1-194-en.html
1- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; taherian.reza72@gmail.com
2- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3- School of Medicine, Semnan University of Medical Sciences, Tehran, Iran
Abstract:   (3408 Views)
Background: Previous studies have shown cycloserine to be neuroprotective in some neurodegenerative disorders.
Objectives: To investigate the effect of cycloserine on motor function in Parkinson’s disease in a rat model.
Materials and Methods: Fifty-six healthy male wistar rats were used in this study and were divided into seven groups according to receiving saline, low dose (i.e. 100 mg/kg) and high dose (i.e. 200 mg/kg) of cycloserine for a short period (i.e. 8 days) (groups A-C, respectively) or long period (i.e. 16 days) (groups D-F, respectively) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-rat model of Parkinson. Also, a healthy group not receiving MPTP or any other drug was considered as the control group (group G). Apomorphine-induced rotational test (AIRT), elevated body swing test (EBST) and rotarod performance test (RPT) were done to examine behavioral performances.
Results: Long-period treatment with cycloserine reduced MPTP-induced behavioral disturbances, i.e. net number of rotations in AIRT, net biased swing in EBST and reduced rotarod performance time in RPT, more than short period treatment. Although high dose of cycloserine was more effective than its low dose in reducing motor disturbance in initial trials of each test, long period treatment with low dose of cycloserine was similar to long period treatment with a high dose of it in reducing MPTP-induced Parkinsonism in EBST and RPT in latent trials.
Conclusion: Long-period treatment with low-dose cycloserine seems to be the best option to obtain a sufficient neuroprotective effect for lowering motor disturbance in Parkinson’s disease.
Full-Text [PDF 1187 kb]   (914 Downloads) |   |   Full-Text (HTML)  (837 Views)  
Type of Study: Research | Subject: Special
Received: 2017/10/18 | Accepted: 2017/10/18 | Published: 2017/10/18

References
1. Schrag A, Jahanshahi M, Quinn N. What Contributes to Quality of Life in Patients with Parkinson's Disease? J Neurol Neurosurg Psychiatry 2000;69(3):308-12. [DOI:10.1136/jnnp.69.3.308] [PMID] [PMCID]
2. Levy OA, Malagelada C, Greene LA. Cell Death Pathways in Parkinson's Disease: Proximal Triggers, Distal Effectors, and Final Steps. Apoptosis 2009;14(4):478-500. [DOI:10.1007/s10495-008-0309-3] [PMID] [PMCID]
3. Ko HS, Lee Y, Shin J-H, Karuppagounder SS, Gadad BS, Koleske AJ, et al. Phosphorylation by the c-Abl Protein Tyrosine Kinase Inhibits Parkin's Ubiquitination and Protective Function. Proc Natl Acad Sci U S A 2010;107(38):16691-6. [DOI:10.1073/pnas.1006083107] [PMID] [PMCID]
4. Seet RC, Lee C-YJ, Lim EC, Tan JJ, Quek AM, Chong W-L, et al. Oxidative Damage in Parkinson Disease: Measurement Using Accurate Biomarkers. Free Rad Biol Medi2010;48(4):560-6. [DOI:10.1016/j.freeradbiomed.2009.11.026] [PMID]
5. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J, Stefani A, et al. Deep Brain Stimulation for Parkinson Disease: An Expert Consensus and Review of Key Issues. Arch Neurol 2011;68(2):165-. [DOI:10.1001/archneurol.2010.260] [PMID] [PMCID]
6. Duker AP, Espay AJ. Surgical treatment of Parkinson disease: past, present, and future. Neurologic clinics. 2013;31(3):799-808. [DOI:10.1016/j.ncl.2013.03.007] [PMID] [PMCID]
7. Aquino CC, Fox SH. Clinical Spectrum of Levodopa‐induced Complications. Mov Disord2015;30(1):80-9. [DOI:10.1002/mds.26125] [PMID]
8. Schneider J, Tinker JP, Van Velson M, Giardiniere M. Effects of the Partial Glycine Agonist D-cycloserine on Cognitive Functioning in Chronic Low Dose MPTP-treated Monkeys. Brain Res2000;860(1):190-4. [DOI:10.1016/S0006-8993(00)02036-9]
9. Billard JM, Rouaud E. Deficit of NMDA Receptor Activation in CA1 Hippocampal Area of Aged Rats Is Rescued by D‐cycloserine. Eur J Neurosci 2007;25(8):2260-8. [DOI:10.1111/j.1460-9568.2007.05488.x] [PMID]
10. Riekkinen M, Riekkinen Jr P. Nicotine and D‐cycloserine Enhance Acquisition of Water Maze Spatial Navigation in Aged Rats. Neuroreport 1997;8(3):699-703. [DOI:10.1097/00001756-199702100-00024] [PMID]
11. Ho Y-J, Hsu L-S, Wang C-F, Hsu W-Y, Lai T-J, Hsu C-C, et al. Behavioral Effects of D-cycloserine in Rats: the Role of Anxiety Level. Brain Res 2005;1043(1):179-85. [DOI:10.1016/j.brainres.2005.02.057] [PMID]
12. Wu S-L, Hsu L-S, Tu W-T, Wang W-F, Huang Y-T, Pawlak CR, et al. Effects of D-cycloserine on the Behavior and ERK Activity in the Amygdala: Role of Individual Anxiety Levels. Behav Brain Res 2008;187(2):246-53. [DOI:10.1016/j.bbr.2007.09.013] [PMID]
13. Wang A-L, Liou Y-M, Pawlak CR, Ho Y-J. Involvement of NMDA Receptors in Both MPTP-induced Neuroinflammation and Deficits in Episodic-like Memory in Wistar Rats. Behav Brain Res 2010;208(1):38-46. [DOI:10.1016/j.bbr.2009.11.006] [PMID]
14. Bhushan B, Chander R, Kajal N, Ranga V, Gupta A, Bharti H. Profile of Adverse Drug Reactions in Drug Resistant Tuberculosis from Punjab. Indian JTuberc 2014;61(4):318-24. [PMID]
15. Kalinina TS, Nerobkova LN, Voronina TA, Stovbun SV, Litvin AA, Sergienko VI. Study of Antiparkinsonic Activity of Panavir on a Model of Parkinson Syndrome Induced by Systemic Administration of MPTP to Outbred Rats and C57Bl/6 Mice. Bull Exp Biol Med 2005;140(1):55-7. [DOI:10.1007/s10517-005-0410-3] [PMID]
16. Castro AA, Wiemes BP, Matheus FC, Lapa FR, Viola GG, Santos AR, et al. Atorvastatin Improves Cognitive, Emotional and Motor Impairments Induced by Intranasal 1-methyl-4-phenyl-1, 2, 3, 6-Tetrahydropyridine (MPTP) Administration in Rats, an Experimental Model of Parkinson's Disease. Brain Res 2013;1513:103-16. [DOI:10.1016/j.brainres.2013.03.029] [PMID]
17. Bisht R, Kaur B, Gupta H, Prakash A. Ceftriaxone Mediated Rescue of Nigral Oxidative Damage and Motor Deficits in MPTP Model of Parkinson's Disease in Rats. Neurotoxicology 2014;44:71-9. [DOI:10.1016/j.neuro.2014.05.009] [PMID]
18. Lin JG, Chen CJ, Yang HB, Chen YH, Hung SY. Electroacupuncture Promotes Recovery of Behaviorial Disturbance and Reduces Dopaminergic Neuron Degeneration in Rodent Models of Parkinson's Disease. IntJ Mol Sci 2017;18(9):1846. [DOI:10.3390/ijms18091846] [PMID] [PMCID]
19. Moriguchi S, Yabuki Y, Fukunaga K. Reduced Calcium/Calmodulin‐Dependent Protein Kinase II Activity in the Hippocampus Is Associated with Impaired Cognitive Function in MPTP‐treated Mice. J Neurochem 2012;120(4):541-51. [DOI:10.1111/j.1471-4159.2011.07608.x] [PMID]
20. Fujita M, Nishino H, Kumazaki M, Shimada S, Tohyama M, Nishimura T. Expression of Dopamine Transporter mRNA and Its Binding Site in Fetal Nigral Cells Transplanted Into the Striatum of 6-OHDA Lesioned Rat. Mol Brain Res 1996;39(1):127-36. [DOI:10.1016/0169-328X(96)00018-6]
21. Borlongan CV, Randall TS, Cahill DW, Sanberg PR. Asymmetrical Motor Behavior in Rats with Unilateral Striatal Excitotoxic Lesions as Revealed by the Elevated Body Swing Test. Brain Res 1995;676(1):231-4. [DOI:10.1016/0006-8993(95)00150-O]
22. Lundblad M, Vaudano E, Cenci M. Cellular and Behavioural Effects of the Adenosine A2a Receptor Antagonist KW‐6002 in a Rat Model of l‐DOPA‐induced Dyskinesia. J Neurochem 2003;84(6):1398-410. [DOI:10.1046/j.1471-4159.2003.01632.x] [PMID]
23. Ulas J, Weihmuller F, Brunner L, Joyce J, Marshall J, Cotman C. Selective Increase of NMDA-sensitive Glutamate Binding in the Striatum of Parkinson's Disease, Alzheimer's Disease, and Mixed Parkinson's Disease/Alzheimer's Disease Patients: an Autoradiographic Study. J Neurosci 1994;14(11):6317-24. [PMID]
24. Ransom RW, Deschenes NL. Glycine Modulation of NMDA-evoked Release of [3 H] Acetylcholine and [3 H] Dopamine from Rat Striatal Slices. Neurosci Lett 1989;96(3):323-8. [DOI:10.1016/0304-3940(89)90399-6]
25. Nishimura LM, Boegman RJ. N-methyl-D-aspartate-evoked Release of Acetylcholine from the Medial Septum/Diagonal Band of Rat Brain. Neurosci Lett 1990;115(2):259-64. [DOI:10.1016/0304-3940(90)90465-L]
26. Matsuoka N, Aigner TG. The Glycine/NMDA Receptor Antagonist HA-966 Impairs Visual Recognition Memory in Rhesus Monkeys. Brain Res 1996;731(1):72-8. [DOI:10.1016/0006-8993(96)00463-5]
27. Ho Y-J, Ho S-C, Pawlak CR, Yeh K-Y. Effects of D-cycloserine on MPTP-induced Behavioral and Neurological Changes: Potential for Treatment of Parkinson's Disease Dementia. Behav Brain Res2011;219(2):280-90. [DOI:10.1016/j.bbr.2011.01.028] [PMID]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Caspian Journal of Neurological Sciences

Designed & Developed by : Yektaweb