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Background: Vascular endothelial growth factor (VEGF) signaling pathway plays an important 
role in the pathogenesis of seizure. The oxidant/antioxidant factors and miRNA expression in the 
brain are differentially regulated in seizure.

Objectives: We aim to investigate the potential mechanism of action for the recombinant human 
VEGF (rhVEGF) in mice with maximal electroshock (MES)-induced seizure.

Materials & Methods: A total of 40 male mice (weight: 20-25 g) were treated intraperitoneally with 
normal saline, or rhVEGF (50, 100, and 150 µg/kg, daily for 4 consecutive days). One hour after the last 
injection, seizures were induced in each animal by MES. The latency for the onset of the first clonus and 
the duration of hind limb extension (HLE) were recorded. The levels of nitric oxide (NO), total antioxidant 
capacity (TAC), and micoRNA-142-5p expression were determined in the hippocampus of mice. 
Blood-brain barrier (BBB) permeability was also estimated by Evans blue dye extravasation method.

Results: The administration of rhVEGF at all doses significantly reduced the HLE duration. 
However, latency for the seizure onset increased after administration of 50 and 150 μg/kg rhVEGF 
and decreased after administration of 100 μg/kg rhVEGF. In the brain, the NO level decreased, 
while TAC level and microRNA-142-5p expression increased by rhVEGF treatment in mice with 
MES-induced seizure. Pretreatment with rhVEGF at doses of 100 and 150 μg/kg reversed the 
increase in BBB leakage induced by MES-induced seizures.

Conclusion: The rhVEGF administration can prevent MES-induced seizures by regulating NO, 
TAC, and miR-142-5 expression levels in the hippocampus and reducing BBB leakage in mice. 
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Introduction 

eneralized tonic-clonic seizure (GTCS) 
is one of the most prevalent neurological 
diseases in Iran, with a prevalence of 16.6 
per 1000 people [1]. Hippocampal and ex-
tra-hippocampal pathologies contribute to 

GTCS [2, 3]. Vascular endothelial growth factor (VEGF) 
is a neuroprotective agent, and its administration may 
promote neuronal survival, neurogenesis, and cerebral 
angiogenesis [4, 5]. Its inhibitory effect on the firing rate 
of the action potentials of hippocampal neurons is medi-
ated by modulation of the voltage-gated sodium channel 
[6]. The beneficial effects of VEGF on neurodegenera-
tive and neuropathic conditions have been reported in 
people with neurological disorders such as trauma, sei-
zures, and ischemia [7]. In an animal study, a decrease 
in the VEGF level caused a rapid and sustained change 
in the brain activity of rodents [8]. Also, VEGF can pro-
tect neuronal damage caused by seizures [9]. Moreover, 
VEGF has positive effects on neuroinflammation, brain 
vascular permeability, neurotransmitter release, synaptic 
function, reactive oxygen species (ROS)-induced cel-
lular damage, and N-methyl-D-aspartate (NMDA) re-
ceptor function [10, 11]. In a study, recombinant human 
VEGF (rhVEGF) was used as an anti-cancer agent and 
showed a stimulatory effect on axonal growth and en-
hanced Schwann cell proliferation and survival [9, 12, 
13]. Its administration can lead to a decline in glutamate 
excitotoxicity in the cultured hippocampal neurons [14]. 
Administration of rhVEGF may exert an anti-inflamma-
tory action and improve neural survival in neuropatho-
logical conditions [15]. Therefore, rhVEGF seems to be 
an appropriate alternative drug for the prevention and 
treatment of seizures. Since rhVEGF can pass the blood-
brain barrier (BBB), it is distributed throughout the brain 
[7]. Moreover, it affects neuronal activity in the central 
nervous system [16, 17]. Therefore, further investigation 
of its potential mechanism of action can be beneficial.

Several studies have demonstrated an increase in hip-
pocampus nitric oxide (NO) level and BBB permeabil-
ity in neurodegenerative diseases, including epilepsy 
[18-22]. Reduction in brain antioxidant capacity due to 
neuronal hyperexcitability plays an essential role in epi-
leptogenesis and influences anti-epileptic drug therapy 
[23]. Furthermore, microRNA 142-5p is involved in epi-
leptic behaviors [24, 25]. However, the manipulation of 
miR-142–5p attenuates pilocarpine-induced seizures in 
mice [26]. On the other hand, administration of rhVEGF 
reduces BBB permeability following focal cerebral em-
bolic ischemia and accelerates neurological recovery 
in rats [27]. Therefore, targeting the above-mentioned 
mediators in the brain can exert both anticonvulsant and 
proconvulsant effects.

In this study, we hypothesize that administering rh-
VEGF can prevent GTCS by modulating several mecha-
nisms. We aim to investigate whether rhVEGF has an-
ticonvulsant effect or a proconvulsant effect. We also 
evaluate the effects of NO, total antioxidant capacity 
(TAC), and miR-142-5p expression in the hippocampus 
and alteration of the BBB permeability as rhVEGF’s 
possible mechanisms of action, on maximal electro-
shock (MES)-induced seizure in mice.

Materials and Methods

In this study, rhVEGF was purchased from Zeist Pa-
joohan Mahbob Company (Tehran, Iran). The cDNA 
of mice was prepared according to the method reported 
in a previous study [28]. The L-NG-nitro-L-arginine 
methyl ester hydrochloride (L-NAME) was used as a 
non-specific inhibitor of NO synthase. Template DNA 
from clinical specimens was prepared using the high 
pure PCR template preparation kit (Roche Diagnostics, 
Mannheim, Germany) according to the manufacturer’s 
instructions. 

G

Highlights 

• Recombinant human vascular endothelial growth factor (VEGF) has dose-dependent proconvulsant and anticonvul-
sant effects on maximal electroshock-induced seizures.

• Recombinant human VEGF increases otal antioxidant capacity (TAC) and microRNA-142-5p expression in the 
brains of mice with seizures.

• Recombinant human VEGF prevents the seizure-induced increase in blood-brain barrier permeability and brain NO 
level.
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Twenty-four male Swiss albino mice weighing 25-30 
g were used in the experimental work. Animals were 
kept in the Experimental Research Laboratory of Sha-
hed University. Habituation occurred under laboratory 
conditions at 25°C in seven days, with 12:12 h light-dark 
cycles. Moreover, the mice received a standard com-
mercial diet and ad libitum water. Mice put in groups 
of seven in standard polypropylene cages and were 
given food and ad libitum water and maintained in a 
temperature-controlled (25±2°C) room with a 12:12 day/
night cycle. The mice were randomly divided into five 
groups: Control group without receiving MES (for mo-
lecular test), group 1 received 0.1 M phosphate-buffered 
saline (PBS) injection for 4 consecutive days followed 
by MES (for seizure tests), group 2 received intraperito-
neal (i.p.) saline injection for four consecutive days fol-
lowed by MES, and groups 3 to 5 received i.p. injection 
of rhVEGF at 50, 100 and 150 µg/kg/day, respectively, 
for four consecutive days followed by MES. The doses 
were determined based on a previous study [29]. 

An alternating current (0.2 seconds, 50 mA at 60 Hz) 
generated by an stimulator (Borj Sanat, Iran) was used 
to induce MES seizures. The current was applied by 
ear-clip electrodes moistened with normal saline [30]. 
The latency for the onset of the first clonus and duration 
of tonic hind limb extension (HLE) were recorded. Im-
mediately after the MES, the mice were quickly decapi-
tated, and their brains were removed from the skull and 
placed in an ice-cold normal saline solution. Brain tissue 
samples were homogenized in PBS (4°C, pH=7.4). Then, 
samples were centrifuged at 4000×g for 10 min at 4°C, 
and the supernatant was used for various biochemical 
assays. The TAC level in the homogenate was measured 
using the Naxifer™ TAC assay kit [31] purchased from 
Navand Salamat Company (Urmia, Iran). The NO level 
in the homogenate was measured by the Griess method. 

Total RNA was extracted from brain tissues (1 cm3) 
using a miRNA assay kit (AnaCell, Ana Cell Tec., Iran) 
according to the manufacturer’s protocol. Reverse tran-
scription of miR142-5p and cDNA was performed us-
ing miRNA cDNA Synthesis Kit (Roche Diagnostics, 
Mannheim, Germany) and cDNA synthesis kit, respec-
tively. Expression levels of miR-142-5p and a house-
keeping gene control (18S rRNA) detected with a Taq-
Man miRNA assay kit (AnaCell extraction kit), were 
measured using a thermocycler (Applied Biosystems; 
Thermo Fisher Scientific Inc., USA), according to the 
manufacturer’s protocol. Thermocycling conditions 
were as follows: 95˚C for 30 sec, followed by 35 cycles 
of 95˚C for 10 sec and 60˚C for 25 sec. Primers were 
as follows: miR-142-5p, forward 5’-AACTCCAGC 

TGGTCCTTAG-3’, reverse 5’-TCTTGAACCCT-
CATCCTG T-3’; and housekeeping gene forward 
5’-GCTTCGGCAGCACATATACTA AAAT-3’, re-
verse 5’-CGCTTCACGAATTTGCGT-3’ [32].

A separate group of mice was tested for BBB perme-
ability by using Evans blue dye extravasation method 
[33]. Mice were decapitated 4 h after MES-induced 
seizure according to previously published protocol with 
some modification, and their brains were removed, 
weighed, and homogenized in 1.0 mL of trichloroacetic 
acid (50% in pure water), and centrifuged at 10,000 rpm 
for 20 min. The absorbance of supernatants was read by 
a microplate reader (SpectraMax M5, Molecular Devic-
es, USA) at 630 nm. The amount of Evans blue dye was 
quantified according to external standard curve of Evans 
blue dye concentration (25–2,000 ng/mL) in 50% TCA/
ethanol (1:3), and expressed in μg/g of brain tissue.

Statistical comparisons were made using GraphPad 
Prism software, version 5. To determine the differences 
in seizure threshold, latency of seizures, and brain TAC 
and NO levels, one-way ANOVA followed by Tukey’s 
post hoc test were used. The data were presented as 
Mean±SEM. 

Results	

As shown in Table 1, all animals exposed to MES 
had GTCS. The results showed that the treatment by 
rhVEGF (50 and 150 µg/kg, i.p.) for four days before 
MES application had no significant effect on seizure 
onset. However, treatment with rhVEGF at 100 µg/kg 
i.p was associated with significantly lower latency for 
the onset of first clonus. The HLE duration was signifi-
cantly reduced following treatment with all doses of rh-
VEGF compared to the MES group (P<0.01). 

Compared to the vehicle-treated control group, the NO 
level significantly increased in the hippocampus of mice 
after MES-induced seizures (P<0.01). Conversely, treat-
ment with all doses of rhVEGF for four days significant-
ly prevented from MES-induced increase of NO level in 
the hippocampus (P<0.01, Figure 1). 

As shown in Figure 2, the TAC of the hippocampus 
in the MES-induced seizure group was lower (25.26± 
0.3 µmol) compared to the control group (30.32±0.27 
µmol). Compared to the MES group, rhVEGF treatment 
significantly increased the TAC in the brain in a dose-in-
dependent manner. The data indicate that treatment with 
100 µg/kg dose of rhVEGF increased the TAC more 
than the 50 and 150 µg/kg doses of rhVEGF.
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To investigate the central anti-inflammatory mecha-
nism of rhVEGF in the MES model, the miR-142-5p 
in the hippocampus, relative to a housekeeping gene 
expression, was measured by real-time quantitative 
PCR following MES-induced seizure in mice. The re-
sults showed a high expression level of miR-142-5p 
in the brain of MES-induced seizure group (Figure 3). 
Compared to the MES group, miR-142-5p expression 
increased significantly in the hippocampus of mice in all 
rhVEGF-treated groups (P<0.05). These results indicate 
that rhVEGF enhanced miRNA-142-5p expression in 
the hippocampus of MES-treated mice. 

To investigate the neuroinflammation mechanism of 
rhVEGF in the MES model, we examined the BBB 
permeability. The reduction of the leakage showed the 
improvement of neuroinflammation, indicating the en-
hancement of BBB leakage following epileptiform ac-

tivity in the MES group compared to the control group. 
Treatment with 100 and 150 µg/kg doses of rhVEGF 
reduced the seizure-induced increase in the BBB perme-
ability (Figure 4). 

Discussion

Our results suggested that rhVEGF may have both pro-
convulsant and anticonvulsant effects. Decreased myo-
clonic response was an convulsive response, while reduced 
HLE duration showed anticonvulsant effect. These results 
raise questions regarding rhVEGF’s mechanisms of ac-
tion. A possible explanation for the opposite effects of the 
same dose of rhVEGF is its dual effect on both presynap-
tic and postsynaptic mechanisms in the hippocampus [34]. 
In support of this hypothesis, a study showed that VEGF 
dependent mechanisms are likely to be the underlying 
mechanism for control of balance between glutamate and 

Table 1. The mean latency for the onset of first clonus and the HLE duration in different study groups (n=10 in each group) 

Mean±SEM
Groups 

Duration of HLE (s)Latency for the Onset of Seizure (s)

2.89±0.392.77±0.28Vehicle (PBS)

1.76±0.05** ##2.24±0.36rhVEGF (50 µg/kg)

1.99±0.04** ##1.9±0.38**rhVEGF (100 µg/kg)

1.65±0.01** ##2.49±0.07rhVEGF (150 µg/kg)

**Significant compared to vehicle+MES group (P≤0.01), ##Significant compared to the rhVEGF+MES group (P≤0.01).

Note: Data was analyzed by one-way ANOVA followed by Dunnett’s test. 
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Figure 1. The total NO content (µmol/mg protein) in the hippocampus of mice in different study groups

**Significant compared to the control group (P<0.01), ## Significant compared to the vehicle+MES group (P<0.01).

Note: Data were reported as Mean±SEM and analyzed using one-way ANOVA followed by Tukey’s post hoc test. 
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γ-aminobutyric acid (GABA) in the brain [35]. Thus, the 
VEGF in the brain addresses a key challenge in neurobiol-
ogy of determining how it induces or suppresses effects on 
neuronal activity to produce proconvulsant or anticonvul-
sant effects. In addition, molecular studies have shown that 
VEGF inhibits astrocytic calcium influx, which is a promis-

ing therapeutic approach for preventing seizures [36, 37]. 
On the other hand, it has been found that cytokines stimu-
late the production of VEGF, and this compound, in turn, 
increases seizure potential [9]. Investigation of the rhVEGF 
mechanisms identified the modulation of NO level, the in-
crease of TAC and microRNA expression in the hippocam-
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Figure 3. Relative fold change of miRNA-142-5p expression in the hippocampus of mice in different study groups

**Significant compared to the control group (P<0.01), ##Significant compared to the vehicle+MES group (P<0.01) (student’s 
t-test).

Note: Data are expressed as Mean±SEM, and analyzed using ANOVA followed by Tukey’s post hoc test.
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Figure 2. The TAC of hippocampus in the study groups estimated by ferric-reducing antioxidant power (FRAP)

**Significant compared to the control group (P<0.01), ##Significant compared to the vehicle+MES group (P<0.01).

Note: Data are reported as Mean±SEM, data were analyzed using student’s t-test.
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pus and the regulation of BBB permeability as the factors 
that can cause the prevention of seizure development by rh-
VEGF. In line with this finding, a study suggested that miR-
142-5p up-regulation is a natural neuroprotective mecha-
nism against several neurodegenerative disorders [38]. 
Therefore, miRNA-142-5p may play a role in rhVEGF’s 
neuroprotective effect against seizure-induced oxidative 
stress factors in the brain. As previously reported, VEGF 
modulates neuronal circuits and suppresses the epileptiform 
activity in the hippocampus of rats [35]. It has a regulatory 
effect on hippocampal neurogenesis and a reverse effect on 
epileptic seizure in murine [38]. Furthermore, the VEGF 
upregulation response following seizures has a protective 
role in hippocampal neurons [39]. Thau-Zuchman et al. 
also showed neuroprotective activity for rhVEGF against 
traumatic brain injury [40]. Moreover, the results of a study 
showed an increase in VEGF and its receptors in the tem-
poral cortex of patients with drug-resistant temporal lobe 
epilepsy, such that it acted as a proconvulsant [41]. Addi-
tionally, VEGF is related to the increase in the postsynaptic 
responses mediated by the NMDA receptors in hippocam-
pal neurons [11]. On the other hand, a study showed that a 
reduction in the expression of VEGF had an anticonvulsant 
effect on pentylentetrazole-induced acute seizures in mice 
[42]. Blocking the VEGF signaling pathway can reduce the 
amplitude and width of the action potential in dissociated 
hippocampal neurons [43]. Furthermore, VEGF was found 
to increase the lactate and can increase the excitability of 
neurons [44]. These studies suggest that rhVEGF may have 
a proconvulsant effect.

There are reports regarding the levels of brain NO 
and oxidative stress markers in epilepsy. Increased NO 
level and reduced antioxidant capacity can produce 
anti-epilepsy and may not be merely a consequence of 
seizures. Electroconvulsive seizures can stimulate the 
VEGF pathway [45]. According to Bussolati et al., the 
VEGF-stimulated NO release is inhibited by the block-
ade of VEGFR-1 [46]. Furthermore, it was shown that 
NO plays an important role in VEGF-induced changes 
in neuronal activity of the brain in mice [47]. Similar to 
another study [48], we showed the protective effects of 
rhVEGF on the regulation of BBB permeability. More-
over, several studies showed miRNA-142-5p role in 
neuronal hyperexcitability in epileptic seizures, oxida-
tive stress, BBB dysfunction, and increased NO level 
in the brain [49-53]. Other subtype of VEGF, such as 
VEGF-B, has shown potent antioxidant property [54]. 
In addition, inhabitation of miRNA-142-5p expression 
was shown to has an antioxidant effect by reducing the 
ROS generation in the epileptic rats [26]. Therefore, the 
augmenting effect of rhVEGF on miRNA-142-5p ex-
pression may be part of its neuroprotective role [55, 56].

Conclusion 

The rhVEGF has both proconvulsant and anticonvul-
sant effects against MES-induced seizures by modu-
lating NO, TAC, and miRNA-142-5p expression and 
reducing BBB leakage. Our results provide empirical 
evidence that rhVEGF has a dose-dependent biphasic ef-
fect on MES-induced seizures. 
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Figure 4. Leakage amount of Evans blue dye in the study groups

**Significant compared to the control group (P<0.01), ##Significant compared to the vehicle+MES group.

Note: Measured in collected blood samples by spectrophotometer. Data are reported as Mean±SEM, data were analyzed using 
student’s t-test.
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