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Background: Facing environmental factors during early postnatal life, directly or indirectly via 
mother-infant relationships, profoundly affects the structure and function of the mammals’ Central 
Nervous System (CNS).

Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation 
period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (CA1) neurons in 
rat offspring.

Materials & Methods: In addition to a group of control mother rats (CO), three groups 
subcutaneously received 5 (M5), 10 (M10), or 20 (M20) mg/kg morphine every 12 hours during 
the lactation period. At 45 days old, following the stimulation of the Schaffers’ collaterals, basic 
field Excitatory Post-Synaptic Potentials (fEPSPs) were recorded in their offspring’s hippocampal 
CA1 neuronal circuits. After the construction input/output curve, paired-pulse stimulations with the 
inter-stimulus intervals of 20, 80, and 200 ms were applied to determine the short-term synaptic 
plasticity, and the paired-pulse ratio was evaluated.

Results: The baseline synaptic responses of the rats CA1 neurons whose mothers received 10 and 
20 mg/kg morphine twice daily during the lactation period decreased compared to the CO animals 
(P<0.01 & P<0.001, respectively). Furthermore, compared to the controls, the Paired-Pulse Ratio 
(PPR) of the CA1 neural circuits of M10 and M20 rats at 20 and 80 ms Inter-Stimulus Intervals 
(ISI) decreased (P<0.01). 

Conclusion: Morphine exposure during the lactation period has a detrimental impact on the primary 
synaptic activity and short-term synaptic plasticity of the hippocampal CA1 neuronal circuits of 
rats’ offspring.
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Introduction

pioids are a group of psychoactive drugs 
[1]. These substances, such as morphine, 
codeine, and fentanyl, are common an-
algesics for reducing post-operative and 
cancer pain. Still, long-term administra-

tion of these drugs is associated with high abuse potential 
[2]. The result of long-term administration of morphine 
is changing the functions, structures, and morphology of 
neural systems [3, 4]. Evidence demonstrates that chron-
ic exposure to morphine reduces neurogenesis and alters 
synaptic transmission in the adult hippocampus [5]. Syn-
aptic plasticity includes Short-Term Synaptic Plasticity 
(STP) and Long-Term Synaptic Plasticity (LTP). Paired-
Pulse Facilitation (PPF) is synaptic plasticity, i.e., short-
term, activity-dependent, and common to most chemi-
cally transmitting synapses; it is expressed as an increase 
in the amplitude of the second of two rapidly Evoked 
Postsynaptic Excitatory Potentials (EPSPs) [6]. The 
simplest form of short-term plasticity is manifested in 
paired-pulse effects, i.e., delivered by consecutive pairs 
of stimuli; Paired-Pulse Depression (PPD) and Paired-
Pulse Facilitation (PPF) [7]. Several studies indicated 
that chronic exposure to morphine could significantly 
reduce hippocampal synaptic plasticity and alter normal 
brain function [8, 9]. For example, Zhou et al. suggested 
that chronic morphine exposure significantly reduces 
LTP induction in the CA1 (Cornu Ammonis 1) area of 
the rat’s hippocampus [10].

In contrast, another study reported that repeated mor-
phine exposure enhanced LTP induction and impaired 
Long-Term Depression (LTD) induction at the Schaf-
fer’s collaterals to CA1 pathway without affecting the 
baseline synaptic responses [11]. However, despite con-
siderable growth in our information’s about the impact 
of chronic morphine exposure on LTP, the effect of this 
experience on short-term synaptic plasticity in the CA1 
area of the rat’s hippocampus remains indefinite. Early 
postnatal life experiences affect neural circuits’ structure 
and function and cognitive function [12]. The develop-
ing brain is highly susceptible to environmental factors 

and stressors [13]. Scientists made several efforts to in-
duce cognitive impairment in rodents and primates by 
administering various neurotoxins responsible for neu-
rodegeneration resulting in memory loss [14]. Ghafari et 
al. argued that exposure to morphine before and during 
the gestational and lactation period induces neuronal cell 
death and changes the hippocampus structure in mice 
offspring [15]. Our previous study signified that chronic 
morphine exposure during the lactation period reduces 
spatial learning and memory and impairs LTP induc-
tion in the CA1 area of the rat offspring’s hippocampus 
[16]. Also, Niu et al. indicated that exposure to morphine 
during the pregnancy impairs the rat offspring’s spatial 
memory and synaptic plasticity of dentate gyrus neu-
rons. It seems that reduced GABAergic inhibition plays 
a role in these effects [17].

Furthermore, studies outlined that Gamma-Aminobu-
tyric Acidergic (GABAergic) synaptic transmission is 
influenced by morphine [18, 19]. As per evidence, GA-
BAergic inhibition plays an essential role in learning 
and memory processes [20] and their probable related 
mechanism, synaptic plasticity [21]. Plenty of GAB-
Aergic interneurons is nested in the hippocampus [22]. 
Maroun and Richter-Levin reported that the GABAergic 
system had been implicated in short-term hippocampal 
plasticity [23]. This study aimed to evaluate the effects 
of morphine exposure during the lactation period on the 
modulation of short-term synaptic plasticity in the neural 
circuits of rats’ hippocampal CA1 area.

Materials and Methods

Forty male Wistar rats aged 45 days (120-150 g) were 
used in this experimental study. The examined rats were 
housed in a standard animal house at temperature 20-
22°C, air humidity 50%-55%, and a 12-12 h light-dark 
cycle. The animals had access to food and water ad li-
bitum. All experiments were authorized by the Ethical 
Committee of Kashan University of Medical Sciences, 
Kashan, Iran, also conducted per the Directive 2010/63/
EU on protecting animals used for scientific purposes. 
The examined animals were divided into one Control 
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group (CO) and 3 groups of rats whose mothers re-
ceived 5 (M5), 10 (M10), or 20 (M20) mg/kg morphine 
every 12 hours during the lactation period, subcutane-
ously. All the rats were deprived of milk on day 21 af-
ter the birth. Besides, only two offsprings were picked 
from each morphine-received mother. Two hours after 
the last dose of morphine was administered to the moth-
ers, we studied the withdrawal syndrome symptoms in 
the offspring. The animals were tested by the Intraperi-
toneal (IP) injection of 2 mg/kg Naloxone hydrochlo-
ride (Temad, Iran). Immediately after the injection, rats’ 
behavior signs were observed for 30 min according to 
a modified version of the Gellert–Holtzman scale in a 
Plexiglas chamber (30×30×50 cm). The signs were in-
cluded the graded (body weight loss during 24 hours af-
ter the injection, jumps, abdominal contractions, & wet 
dog shakes) and the checked signs (irritability, writhing, 
diarrhea, ptosis, erection, or genital grooming, & teeth 
chattering) [24]. 

In vivo Electrophysiology

To record field Excitatory Post-Synaptic Potentials 
(fEPSPs), the rats were anesthetized with urethane (1.5 
g/kg, IP) and placed in a stereotaxic apparatus (Borj 
Sanat, Iran). According to Paxinos and Watson stereo-
taxic atlas [25], a bipolar stimulating electrode was im-
planted into the Schaffer’s collaterals (4.2 mm posterior 
to bregma, 3.8 mm lateral to the midline, & 2.8 mm 
below the skull), and a monopolar recording electrode 
was lowered to the CA1 stratum radiatum (3.4 poste-
riors to bregma, 2.5 mm lateral to the midline, and 2.5 
mm below the skull). Electrodes were prepared from 
Teflon-coated stainless-steel wire (0.008-inch diameter, 
A-M Systems, USA) exposed only at the tip (tip sepa-
ration 0.10 mm). The proper location of the electrodes 
was determined by optimizing the evoked response. Us-
ing the eLab system (ScienceBeam, Iran) and related 
computer software (eProbe), fEPSPs were recorded 
from the stratum radiatum of the CA1 area of the hip-
pocampus in response to stimulation (two sweeps/min at 
30-sec intervals) of the ipsilateral Schaffer’s collaterals. 
Recording signals were amplified by the eLab amplifier 
and saved at a 10 kHz sampling rate for offline analy-
sis. Electrical stimulation consisted of constant current 
rectangular pulses (200 μs, 0.1 Hz, 50–1000 μA) deliv-
ered by the eLab isolator. The baseline recording was 
considered stable when the fEPSP amplitude variation 
(mV) was less than 10% for at least 20 min. The animals 
with unstable baseline responses were discarded from 
the experiments. By increasing the stimulus intensity 
and measuring the amplitude of the fEPSPs, an Input/
Output (I/O) curve was set. The evoked field potentials 

were measured at five different stimulation intensities, 
and I/O curves were constructed. The threshold intensity 
(T) was the lowest intensity that evoked a measurable 
response. Then, 2T to 5T stimulus intensities were ap-
plied. Stimulus intensity was adjusted to provide a re-
sponse that was 60% of the maximum response as a test 
pulse. Investigating the Short-Term Synaptic Plasticity 
(STP), after 30 min stable baseline recording, paired-
pulse stimuli were applied at 20, 80, and 200 ms Inter-
Stimulus Intervals (ISI).

The collected data were expressed as mean±SEM. 
Using one-way Analysis of Variance (ANOVA), the 
Gellert–Holtzman scores of the study groups were ana-
lyzed. The averaged waveform of each six fEPSPs was 
used for statistical analysis. The extent of changes (%) 
in fEPSPs slope (mV/ms) was normalized concerning 
the 30 min baseline recording and then was analyzed by 
ANOVA. Tukey’s test was applied as a post-hoc exami-
nation. All statistical analyses were performed in SPSS 
at P<0.05.

Results

Our results demonstrated that receiving morphine 
during the lactation period induces the morphine de-
pendence of rats’ offspring, demonstrating withdrawal 
signs. The overall Gellert-Holtzman score by one-way 
ANOVA data indicated a significant difference be-
tween the study groups (F3,36=14.423; P<0.0001). The 
overall mean±SEM Gellert-Holtzman score of M5 rats 
was 10.34±2.76 (Figure 1) and increased to 19.67±5.08 
and 22.33±3.68 in M10 and M20 groups, respectively. 
According to Tukey’s test data, there was a significant 
difference between the CO group and the other groups 
(P<0.001); also between the M5 group and M10 and 
M20 groups (P<0.01, for both comparisons).

Stimulating Schaffer’s collaterals, evoked responses 
were recorded from hippocampal CA1 neurons of rats’ 
offspring. Six sweeps were averaged at each stimulus 
intensity. The slope of fEPSPs was calculated at 5 dif-
ferent stimulus intensities, and then input-output curves 
for the study groups were created. One-Way ANOVA 
results signified a significant difference between the 
experimental groups in the mean values of stimulus in-
tensity (F3,36=4.036; P<0.001). According to Table 1, the 
mean stimulus intensity required for evoked responses in 
the M10 and M20 groups was significantly greater than 
the CO animals (P<0.01 for both comparisons per set of 
stimulus intensity). Furthermore, the statistical analysis 
of the slope amplitude of fEPSPs in each stimulus in-
tensity demonstrated a significant difference between the 
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evoked responses (F3,36=3.719; P<0.001). As illustrated in 
Figure 2, receiving morphine during the lactation period 
caused a significant decrease in the baseline synaptic re-
sponses of the offsprings’ CA1 neurons, dose-dependently.

The paired-pulse stimulation paradigm was applied to 
evaluate the effect of morphine exposure during the lacta-
tion period on the excitability of the hippocampal neuronal 
circuits of rats’ offspring. The one-way ANOVA results 
outlined a significant difference between the Paired-Pulse 
Ratio (PPR) of different study groups at 20 and 80 ms 
Inter-Stimulus Intervals (ISI) (F3,36=7.652; P<0.001 & 
F3,36=11.839; P<0.001, respectively). There was no signifi-
cant difference between the PPR of different study groups 

at 200 ms ISI (Figure 3). The mean±SEM PPR of the CO 
animals at 20 ms ISI was 92.44±2.98% and significantly de-
creased to 77.11±3.48% and 70.76±5.93% in the M10 and 
M20 groups (P<0.01 for both the comparisons). Tukey’s 
results also suggested that the PPR of the mean±SEM CO 
animals at 80 ms ISI was 151.33±8.73% and significantly 
decreased to 129.38±9.37% and 123.82±12.62% in the 
M10 and M20 groups (P<0.01 for both the comparisons).

Discussion

We reported that morphine consumption during the 
lactation period causes morphine dependency in rat off-

Table 1. The mean±SEM values of different stimulus intensity (μA) in the experimental groups

Groups
Mean±SEM

T 2T 3T 4T 5T

CO 95.48±5.15 181.61±10.84 315.66±14.38 449.68±17.84 552.09±28.49

M5 101.51±7.24 179.36±11.41 334.76±16.21 472.42±21.03 601.35±21.76

M10 119.58±6.38** 217.84±15.12** 383.37±18.49** 688.94±14.67** 731/66±19.64**

M20 138.22±9.53** 246.92±18.32** 491.17±11.13** 716.45±22.39** 839.08±27.18**

The threshold intensity (T) was the lowest intensity that evoked a measurable response, and the other applied intensities were 
2T to 5T.

** P<0.01; the CO vs. the M10 and M20 groups.

Figure 1. Histograms show the effect of receiving different doses of morphine during the lactation period on the dependency 
of rat offspring 

The one-way ANOVA data indicated that the overall Gellert-Holtzman score grew as the morphine dose increased. Data are 
presented as Means±SEM. 

*** P<0.001 the CO group vs. the other groups.

## P<0.01 the M5 group vs. the M10 and M20 groups.
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spring. We also demonstrated that besides decreasing the 
basic synaptic responses, short-term synaptic plasticity 
of the rats CA1 neurons whose mothers received 10 mg/
kg and 20 mg/kg morphine twice daily during the lacta-
tion period significantly decreased at 20 and 80 ms ISI. 
There has often been discussion about whether morphine 
received by the mother can be detected in breastfed ba-
bies or not. According to our information, no investi-
gation on the excretion of morphine in animals’ breast 
milk was published. Still, Feilberg et al. demonstrated 
that morphine is detected in human milk only 30 min-
utes after injection. They also concluded that morphine 
concentrations are higher in milk than in plasma [26]. 
Robieux et al. have revealed that 0.8 to 12% of morphine 
received by the mother can be found in the serum of a 
breastfed infant [27].

Besides, Tao et al. stated that the intake of morphine 
during pregnancy and lactation makes 14-day-old rat 
offspring dependent and reduces the anti-nociceptive 
morphine effect [28]. At the molecular level, Yang et 
al. reported that the pre- and post-natal morphine ex-
posure influences the N-Methyl-D-Aspartate (NMDA) 
receptors-mediated synaptic plasticity in the hippocam-
pus of rat offspring [29]. Our previous study showed 
that morphine consumption during the lactation period 
causes morphine dependency, impairs spatial learning 
and memory, and also decreases synaptic plasticity of 
hippocampal neural circuits of rat offspring [16]. As a 

kind of brain disorder, drug dependence alters the func-
tion of the neuronal circuit, including altering neuronal 
plasticity and synaptic transmitter release [30, 31]. Fur-
thermore, the drug’s chronic administration leads to tox-
icity due to the drug overdose and increased side effects 
[32]. A study suggested that addiction is an aberrant form 
of memory associated with synaptic plasticity transfor-
mation [33].

Furthermore, morphine dependence affects the plan of 
a synaptic junction [4, 34]. For example, acute exposure 
to morphine could alter the strength of present connec-
tions that might lead to changes in short-term plasticity 
[35]. Paired-Pulse stimulation elicited by two similar 
stimuli is a procedure to study short-term plasticity, i.e., 
substantial in information processing [36]. Wang et al. 
found that chronic morphine exposure significantly re-
duces PPD and frequency depression in rats’ primary vi-
sual cortex [35]. These authors previously reported that 
postsynaptic GABAergic inhibition might be vital for 
short-term depression in the geniculo-cortical pathway.

Moreover, the GABAergic system is essential for 
short-term synaptic plasticity [37]. For example, the 
PPD of field potentials could be induced by normal 
feedforward or feedback inhibitory influences [38]. The 
blockade of GABAergic inhibition by GABAA recep-
tors’ antagonists can increase PPR or turn the PPD to 
PPF [39]. Additionally, variation in presynaptic calcium 

Figure 2. The synaptic input/output (I/O) relation between the Schaffer’s collaterals and CA1 pyramidal neurons in the hip-
pocampus of offspring in different study groups 

Receiving morphine during the lactation period caused a significant decrease in the baseline synaptic responses of the off-
springs’ CA1 neurons, dose-dependently.

** P<0.01 the CO group vs. the M10 group in each stimulus intensity. 

*** P<0.001 the CO group vs. the M20 group in each stimulus intensity.
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[7], i.e., responsible for PPF, other mechanisms, such as 
desensitization of AMPA receptors [40] and GABAer-
gic inhibition [39], are implicated in the organization of 
PPD. Zhang et al. reported that Glycine receptors affect 
short-term hippocampal plasticity by influencing GAB-
AA receptors-mediated synaptic currents [37]. As a part 
of the limbic system, the hippocampus plays an essential 
role in synaptic plasticity and neural adaptation in the 
CNS. It has multiple opiate receptors and GABAergic 
neurons [41]. Central GABAergic neurotransmission 

has interconnected with the mesolimbic dopaminergic 
system during addiction processes [42]. It was suggested 
that μ-opioid receptors connected two GABAergic and 
opioidergic systems [43]. The result of chronic morphine 
exposure is the downregulation of ionotropic GABAB 
receptors in the mice [44]. Morphine treatment has also 
been shown to decrease GABA release [45], increase 
GABA uptake, and elevate GABA transporters expres-
sion in the hippocampus [46]. Zarrindast et al. reported 
that GABAergic receptors in the CA1 region of the hip-

Figure 3. A: Representative traces of fEPSPs were recorded from the hippocampal CA1 area of rats in each study group at dif-
ferent ISI; B: Paired Pulse Ratio (PPR) at 20, 80, and 200 ms inter-stimulus interval of the evoked responses recorded from the 
hippocampal CA1 neurons of different study groups 

Morphine exposure during the lactation period caused a significant decrease in the PPR of the offsprings’ CA1 neural circuits 
at 20 and 80 ms ISI.

**P<0.01 the CO group vs. the M10 and M20 groups in 20 ms ISI. 

##P<0.01 the CO group vs. the M10 and M20 groups in 80 ms ISI.
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pocampus have a vital role in the restoring effect of mor-
phine on the impairment of memory induced by mor-
phine [47]. On the other hand, activating GABAA and 
GABAB receptors with microinjections of their agonists 
into the dorsal hippocampus inhibited morphine reward 
[48, 49]. Therefore, morphine consumption in the hippo-
campal CA1 neurons of rat offspring can disrupt short-
term synaptic plasticity during the lactation period by 
weakening GABAergic inhibition. 

Conclusion

Morphine exposure during the lactation period has a 
detrimental impact on the basic synaptic activity and 
short-term synaptic plasticity of the hippocampal CA1 
neuronal circuits of rat offspring.
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