Volume 4, Issue 1 (Winter 2018)                   Caspian.J.Neurol.Sci 2018, 4(1): 24-29 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mashayekhi S, Saberi A, Salehi Z. Expression of Matrix Metalloproteinase-2 and -9 in Meningioma. Caspian.J.Neurol.Sci 2018; 4 (1) :24-29
URL: http://cjns.gums.ac.ir/article-1-216-en.html
1- Neuroscience Research Center, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
2- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran , salehiz@guilan.ac.ir
Abstract:   (3553 Views)
Background: Meningioma is one of the most common tumors of the central nervous system. It was shown that meningioma had up-regulated expression of Matrix Metalloproteinases (MMPs) that involved in cell growth, angiogenesis and metastasis. 
Objectives: The aim of the study was the assessment of serum MMP-2 and -9 levels in patients with different grades of meningioma. 
Materials & Methods: The study included the number of 66 normal control and 101 patients with different grades of meningioma (42 cases of grade I, 38 grade II and 21 grade III). The serum samples was recruited between March 2013 and August 2017 at the Departments of neurology and neurosurgery, in an academic hospital affiliated to Guilan University of Medical Sciences, in the north of Iran. MMP-2 and -9 levels determined by Enzyme Linked Immunosorbent Assay (ELISA). All data presented are expressed as mean±Standard Error of the Mean (SEM). Statistical analysis was done using one-way ANOVA by SPSS software, version: 24.0 and only values with P≤0.05 were considered as significant 
Results: We showed that the level of MMP-2 and -9 in the serum samples of patients with meningioma was higher than in controls (P<0.01). We also showed that all serum samples from patients and controls, presented MMP-2 and -9 expression, whereas, starting from grades I to III meningioma, a significant increase of MMP-2 and -9 protein expression was observed (P<0.05). 
Conclusion: It is concluded that MMP-2 and -9 are a constant composition of human serum. It is also concluded that MMP-2 and -9 might be involved in the pathophysiology of meningioma and their detection in serum may be useful in classifying meningioma.
Full-Text [PDF 993 kb]   (910 Downloads) |   |   Full-Text (HTML)  (1449 Views)  
Type of Study: Research | Subject: Special
Received: 2017/09/6 | Accepted: 2017/11/23 | Published: 2018/01/1

1. Hortobágyi T, Bencze J, Varkoly G, Kouhsari MC, Klekner Á. Meningioma recurrence. Open Med. 2016; 11:168–73. doi: 10.1515/med-2016-0032 [DOI:10.1515/med-2016-0032]
2. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016; 131(6):803–20. doi: 10.1007/s00401-016-1545-1 [DOI:10.1007/s00401-016-1545-1]
3. Thakur V, Bedogni B. The membrane tethered matrix metalloproteinase MT1-MMP at the forefront of melanoma cell invasion and metastasis. Pharmacol Res. 2016; 111:17–22. doi: 10.1016/j.phrs.2016.05.019 [DOI:10.1016/j.phrs.2016.05.019]
4. Mittal R, Patel AP, Debs LH, Nguyen D, Patel K, Grati M, et al. Intricate Functions of matrix metalloproteinases in physiological and pathological conditions. J Cell Physiol. 2016; 231(12):2599–621. doi: 10.1002/jcp.25430 [DOI:10.1002/jcp.25430]
5. Hida Y, Hamada J. Differential expressions of matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs and their endogenous inhibitors among histologic subtypes of lung cancers. Anticancer Agents Med Chem. 2012; 12(7):744–52. doi: 10.2174/187152012802650156 [DOI:10.2174/187152012802650156]
6. Mignatti P, Rifkin DB. Plasminogen activators and matrixmetalloproteinases in angiogenesis. Enzym and Protein. 1996; 49(1-3):117–37. PMID: 8797002 [DOI:10.1159/000468621] [PMID]
7. Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: A tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002; 3(3):207–14. doi: 10.1038/nrm763 [DOI:10.1038/nrm763]
8. Rojiani MV, Ghoshal-Gupta S, Kutiyanawalla A, Mathur S, Rojiani AM. TIMP-1 overexpression in lung carcinoma enhances tumor kinetics and angiogenesis in brain metastasis. J Neuropathol Exp Neurol. 2015; 74(4):293–304. doi: 10.1097/nen.0000000000000175 [DOI:10.1097/NEN.0000000000000175]
9. Kadoglou NP, Liapis CD. Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Curr Med Res Opin. 2004; 20(4):419–32. doi: 10.1185/030079904125003143 [DOI:10.1185/030079904125003143]
10. Lozonschi L, Sunamura M, Kobari M, Egawa S, Ding L, Matsuno S. Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor, KB-R7785, in two tumor models. Cancer Res. 1999; 59(6):1252-8. PMID: 10096556 [PMID]
11. Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature. Matrix Biol. 2015; 44-46:94–112. doi: 10.1016/j.matbio.2015.04.004 [DOI:10.1016/j.matbio.2015.04.004]
12. Siddique K, Yanamandra N, Gujrati M, Dinh D, Rao J, Olivero W. Expression of matrix metalloproteinases, their inhibitors, and urokinase plasminogen activator in human meningiomas. Int J Oncol. 2003; 22(2): 289-94. doi: 10.3892/ijo.22.2.289 [DOI:10.3892/ijo.22.2.289]
13. Tanaka N, Nishisho I, Yamamoto M, Miya A, Shin E, Karakawa K, et al. Loss of heterozygosity on the long arm of chromosome 22 in pheochromocytoma. Genes, Chromosomes and Cancer. 1992; 5(4):399–403. doi: 10.1002/gcc.2870050416 [DOI:10.1002/gcc.2870050416]
14. Rao J, Olivero W, Gujrati M, Dinh D, Gondi C, Spomar D, et al. RNAi-mediated abrogation of cathepsin B and MMP-9 gene expression in a malignant meningioma cell line leads to decreased tumor growth, invasion and angiogenesis. Int J Oncol. 2007; 31(5):1039-50. doi: 10.3892/ijo.31.5.1039 [DOI:10.3892/ijo.31.5.1039]
15. Paek S, Kim D, Park CK, Phi J, Kim Y, Im S, et al. The role of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinase in microcystic meningiomas. Oncol Rep. 2006; 16(1):49-56. doi: 10.3892/or.16.1.49 [DOI:10.3892/or.16.1.49]
16. Karaarslan N, Gurbuz MS, Caliskan T, Ayan E, Aker FV, Berkman MZ. The effect of matrix metalloproteinase enzyme-3 on the prognosis and biological behaviour of meningiomas. Turk Neurosurg. 2016; 26(5):678-83. doi: 1019-5149.jtn.12807-14.1
17. Coven İ, Ozer O, Ozen O, Şahin Fİ, Altinors N. Presence of matrix metalloproteinase–2 and tissue inhibitor matrix metalloproteinase–2 gene polymorphisms and immunohistochemical expressions in intracranial meningiomas. J Neurosurg. 2014; 121(6):1478–82. doi: 10.3171/2014.8.jns13515 [DOI:10.3171/2014.8.JNS13515]
18. Okuducu AF, Zils U, Michaelis SAM, Mawrin C, von Deimling A. Increased expression of avian erythroblastosis virus E26 oncogene homolog 1 in World Health Organization grade 1 meningiomas is associated with an elevated risk of recurrence and is correlated with the expression of its target genes matrix metalloproteinase-2 and MMP-9. Cancer. 2006; 107(6):1365–72. doi: 10.1002/cncr.22130 [DOI:10.1002/cncr.22130]
19. Shapiro S, Miller A, Lahat N, Sobel E, Lerner A. Expression of matrix metalloproteinases, sICAM-1 and IL-8 in CSF from children with meningitis. J Neurol Sci. 2003; 206(1):43–8. doi: 10.1016/s0022-510x(02)00317-9 [DOI:10.1016/S0022-510X(02)00317-9]
20. Sulik A, Wojtkowska M, Oldak E. Elevated levels of MMP-9 and TIMP-1 in the cerebrospinal fluid of children with echovirus type 30 and mumps meningitis. Scand J Immunol. 2008; 68(3):323–7. doi: 10.1111/j.1365-3083.2008.02137.x [DOI:10.1111/j.1365-3083.2008.02137.x]
21. Kettlun A, Collados L, García L, Cartier LA, Wolf ME, Mosnaim AD, et al. Matrix metalloproteinase profile in patients with Creuztfeldt-Jakob disease. Int J Clin Pract. 2003; 57(6):475-8. PMID: 12918885 [PMID]
22. Killer M, Arthur A, Al-Schameri AR, Barr J, Elbert D, Ladurner G, et al. Cytokine and growth factor concentration in cerebrospinal fluid from patients with hydrocephalus following endovascular embolization of unruptured aneurysms in comparison with other types of hydrocephalus. Neurochem Res. 2010; 35(10):1652–8. doi: 10.1007/s11064-010-0226-z [DOI:10.1007/s11064-010-0226-z]
23. Li YJ, Wang ZH, Zhang B, Zhe X, Wang MJ, Shi ST, et al. Disruption of the blood–brain barrier after generalized tonic-clonic seizures correlates with cerebrospinal fluid MMP-9 levels. J Neuroinflammation. 2013; 10:80. doi: 10.1186/1742-2094-10-80 [DOI:10.1186/1742-2094-10-80]
24. Toroghi F, Mashayekhi F, Montazeri V, Saeedi Saedi H. [Association between MMP9 promoter polymorphism and breast cancer progression in northwest of Iran (Persian)]. Arak Med Univ J. 2016; 19(3):46-53.
25. Saberi A, Salehi Z, Naderinabi B, Hojaat Ansari S, Mashayekhi S. Genetic dimension of intervertebral disc degeneration: polymorphism of matrix metalloproteinase 1 and 3 in the north Iranian population. Turk Neurosurg. 2017. doi: 10.5137/1019-5149.jtn.19978-17.0 [DOI:10.5137/1019-5149.JTN.19978-17.0]
26. Shabanipour S, Mashayekhi F, Bahadori MH, Soruri ZZ. The relationship between MMP-9 promoterpolymorphism and IVF outcome. Cell Mol Biol. 2015; 61(1):64-7. PMID: 25817348 [PMID]
27. Toroghi F, Mashayekhi F, Montazeri V, Saeedi Saedi H, Salehi Z. Association of MMP-9 promoter polymorphism and breast cancer among Iranian patients. Eur J Oncol. 2017; 22(1):38-42.
28. Chen XD, Tang SX, Zhang JH, Zhang LT, Wang YW. CIP2A, an oncoprotein, is associated with cell proliferation, invasion and migration in laryngeal carcinoma cells. Oncol Rep. 2017; 38(2):1005–12. doi: 10.3892/or.2017.5759 [DOI:10.3892/or.2017.5759]
29. Yi X, Guo J, Guo J, Sun S, Yang P, Wang J, et al. EZH2-mediated epigenetic silencing of TIMP2 promotes ovarian cancer migration and invasion. Sci Rep. 2017; 7(1): 3568. doi: 10.1038/s41598-017-03362-z [DOI:10.1038/s41598-017-03362-z]
30. Liu HY, Gu WJ, Wang CZ, Ji XJ, Mu YM. Matrix metalloproteinase-9 and -2 and tissue inhibitor of matrix metalloproteinase-2 in invasive pituitary adenomas. Medicine. 2016; 95(24):e3904. doi: 10.1097/md.0000000000003904 [DOI:10.1097/MD.0000000000003904]
31. Kachra Z, Beaulieu E, Delbecchi L, Mousseau N, Berthelet F, Moumdjian R, et al. Expression of matrix metalloproteinases and their inhibitors in human brain tumors. Clin Exp Metastasis. 1999; 17(7):555–66. doi: 10.1023/a:1006760632766 [DOI:10.1023/A:1006760632766]
32. Pei J, Park IH, Ryu HH, Li SY, Li CH, Lim SH, et al. Sublethal dose of irradiation enhances invasion of malignant glioma cells through p53-MMP 2 pathway in U87MG mouse brain tumor model. Radiat Oncol. 2015; 10:164. doi: 10.1186/s13014-015-0475-8 [DOI:10.1186/s13014-015-0475-8]
33. Alshenawy HA. Immunohistochemical expression of epidermal growth factor receptor, E-cadherin, and matrix metalloproteinase–9 in ovarian epithelial cancer and relation to patient deaths. Ann Diagn Pathol. 2010; 14(6):387–95. doi: 10.1016/j.anndiagpath.2010.05.005 [DOI:10.1016/j.anndiagpath.2010.05.005]
34. AbdElazeem MA, El-Sayed M. The pattern of CD44 and matrix metalloproteinase 9 expression is a useful predictor of ulcerative colitis–associated dysplasia and neoplasia. Ann Diagn Pathol. 2015; 19(6):369–74. doi: 10.1016/j.anndiagpath.2015.08.004 [DOI:10.1016/j.anndiagpath.2015.08.004]
35. Suvà ML, Louis DN. Next-generation molecular genetics of brain tumours. Curr Opin Neurol. 2013; 26(6):681–7. doi: 10.1097/wco.0000000000000027 [DOI:10.1097/WCO.0000000000000027]
36. Dallas S. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev. 2006; 58(2):140–61. doi: 10.1124/pr.58.2.3 [DOI:10.1124/pr.58.2.3]
37. Alexiou GA, Goussia A, Ntoulia A, Zagorianakou P, Malamou-Mitsi V, Voulgaris S, et al. Immunohistochemical study of MRP5 expression in meningiomas. Cancer Chemother Pharmacol. 2012; 71(3):825–8. doi: 10.1007/s00280-012-2057-x [DOI:10.1007/s00280-012-2057-x]
38. Trofatter J. A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell. 1993; 72(5):791–800. doi: 10.1016/0092-8674(93)90406-g [DOI:10.1016/0092-8674(93)90406-G]
39. Nunes F, Shen Y, Niida Y, Beauchamp R, Stemmer-Rachamimov AO, Ramesh V, et al. Inactivation patterns of NF2 and DAL-1/4.1B (EPB41L3) in sporadic meningioma. Cancer Genet Cytogenet. 2005; 162(2):135–9. doi: 10.1016/j.cancergencyto.2005.04.003 [DOI:10.1016/j.cancergencyto.2005.04.003]
40. Wrobel G, Roerig P, Kokocinski F, Neben K, Hahn M, Reifenberger G, et al. Microarray-based gene expression profiling of benign, atypical and anaplastic meningiomas identifies novel genes associated with meningioma progression. Int J Cancer. 2005; 114(2):249–56. doi: 10.1002/ijc.20733 [DOI:10.1002/ijc.20733]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2023 CC BY-NC 4.0 | Caspian Journal of Neurological Sciences

Designed & Developed by : Yektaweb