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Background: Psychogenic non-epileptic seizures (PNES) and idiopathic generalized epilepsy 
(IGE) are two clinical entities that may resemble each other in presentation but differ considerably 
in their mechanisms, outcomes, and therapeutic approaches. The differential diagnosis between 
PNES and IGE can be particularly difficult in cases resistant to medical therapy.

Objectives: This review aimed to compare and contrast the neuroimaging findings associated with 
PNES and IGE to better understand their neurobiological underpinnings and to highlight potential 
imaging-based differentiators that may assist in clinical diagnosis and treatment planning.

Materials & Methods: We reviewed published reports employing structural and functional 
neuroimaging modalities—including magnetic resonance imaging (MRI), morphometric studies, 
diffusion tensor imaging (DTI), positron emission tomography (PET), single-photon emission 
computed tomography (SPECT), magnetic resonance spectroscopy (MRS), and functional MRI 
(fMRI)—in patients with PNES and IGE. The data were synthesized to identify common patterns, 
divergent findings, and clinical correlations.

Results: While IGE is characterized by thalamocortical dysfunction and white matter 
disorganization, PNES is more frequently associated with multifocal structural abnormalities 
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Introduction

sychogenic non-epileptic seizures 
(PNES), also known as functional sei-
zures and previously referred to as pseu-
do or hysterical seizures, are defined as 
episodic symptoms that occur without 

synchronous discharges at the brain cortex level, distin-
guishing them from epilepsy [1-4]. While this epileptic-
mimicking behavior occurs both in people who have 
epilepsy and in those without epilepsy, the coexistence 
rate in epileptic patients is 10-13% [3]. Idiopathic gener-
alized epilepsy (IGE) includes generalized epileptic syn-
dromes from childhood to adulthood, like myoclonic, 
absence, and generalized tonic-clonic seizures (GTCS) 
[5]. The onset of the spike-wave in IGE originates from 
the frontal cortex or from thalamic nuclei, based on an-
other study [6]. Principally, in IGE, the genetic basis is 
much more assumed, while the remaining five, includ-
ing infection, metabolic, structural, immunologic, and 
unknown causes, may be considered other etiologies [7]. 

Based on the neuropsychological and neuroimag-
ing investigations, studies demonstrated impairment in 
thalamo-frontal and corticolimbic pathways, which are 
shared pathways in both IGE and PNES [8]. Impaired 
cognitive function is often found in patients with epilep-
sy, and these patients show impaired function in memo-
ry, attention, and data processing in the ictal, postictal, 
and interictal phases [9]. Likewise, in functional move-
ment disorders, like PNES, the premotor areas, prefron-
tal cortex (PFC), insular cortex, posterior parietal cor-
tex/temporoparietal junction (PPC/TPJ), and amygdala, 
along with their networks, are considered the principal 
structures [10]. 

Although the incidence of epilepsy is generally higher 
in men, both PNES and IGE have a higher prevalence 
in women. The incidence and prevalence rates of PNES 
are 1.4 to 4.9 and 33 patients per 100,000 cases, respec-
tively. Also, among individuals with drug-resistant epi-
lepsy, 20-40% are diagnosed with PNES. As previously 
mentioned, PNES is more common in women during 
their second and third decades of life and is uncommon 

P

Highlights 

• In structural MRI, PNES patients exhibit multifocal abnormalities across frontal, parietal, temporal, and cerebellar 
regions, contrasting with the non-specific or absent structural changes typically observed in IGE.

• In fMRI, distinct connectivity profiles are evident, with PNES showing altered emotion-motor-executive network 
connectivity (e.g. insula, cingulate), while IGE demonstrates thalamocortical dysfunction.

• In DTI, white matter disruptions differ, with PNES involving the uncinate fasciculus and corona radiata, whereas 
IGE primarily affects thalamocortical and callosal tracts.

● In MRS, PNES is associated with elevated glutamate/creatine ratios in limbic regions, while IGE shows reduced 
NAA/creatine in thalamic and prefrontal areas.

● Neuroimaging supports PNES as a disorder with organic underpinnings, necessitating distinct therapeutic strategies 
from IGE.

and disrupted emotion-motor-executive connectivity. Functional imaging demonstrated distinct 
connectivity and metabolic profiles, with PNES patients showing greater alterations in the insular, 
cingulate, and prefrontal regions. MRS studies indicated differences in neurochemical profiles, 
supporting the theory of divergent network-level dysfunctions.

Conclusion: Neuroimaging reveals considerable pathophysiological differences between PNES 
and IGE. These differences can support more accurate differential diagnosis and help guide 
personalized treatment strategies. Importantly, neuroimaging findings challenge the historical 
view of PNES as purely psychogenic, highlighting its organic basis.

Keywords: PNES, Idiopathic generalized epilepsy, Magnetic resonance imaging (MRI), 
Diffusion tensor imaging (DTI), Positron-emission tomography, Magnetic resonance 
spectroscopy (MRS)
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in individuals under the age of six and over 50 years 
[10, 11]. IGE accounts for 20% of epilepsies and has a 
prevalence of one case per 100 people, with the majority 
of diagnoses (approximately 92%) occurring in the third 
decade of life [12].

Psychiatric comorbidities further distinguish the two 
disorders. PNES patients frequently present with anxi-
ety, post-traumatic stress disorder, and personality dis-
orders, and may also experience depression and suicidal 
ideation. In contrast, mood disorders and anxiety-panic 
syndromes are the most commonly reported psychiatric 
comorbidities among individuals with IGE [2, 11, 12].

Given these complexities, neuroimaging studies pro-
vide a valuable framework for comparing the two condi-
tions. While earlier research has often examined PNES 
and IGE separately, a comparative perspective may help 
clarify their distinct neurobiological mechanisms and 
clinical implications. This review, therefore, synthesizes 
the available evidence across multiple imaging modali-
ties—including magnetic resonance imaging (MRI), 
morphometry, diffusion tensor imaging (DTI), Positron 
emission tomography (PET), single-photon emission 
computed tomography (SPECT), Magnetic resonance 
spectroscopy (MRS), and functional MRI (fMRI)—to 
highlight differences and potential diagnostic markers 
between PNES and IGE, as summarized in Table 1 and 
Figure 1.

MRI Neuroimaging Findings 

Brain structural abnormalities

MRI is widely applied in the study of epilepsy to bet-
ter understand its underlying mechanisms. Various MRI 
modalities allow for the assessment of different aspects 
of brain structure and function. These include volumet-
ric and morphometric analyses to assess gray matter, 
diffusion-based techniques to evaluate white matter 
integrity, fMRI to measure neuronal activity, and MR 
spectroscopy for metabolic profiling [13]. 

Previous studies on PNES, while scarce in number, 
reported no brain structural abnormalities [14-17]; 
nevertheless, 40% of patients with PNES had brain le-
sions, and there is limited information on the etiology 
and effect of these lesions on PNES. However, they may 
impact PNES and its consequences. More specifically, 
Bolen et al. reported anatomic abnormalities in 38% 
of patients with PNES, including encephalomalacia or 
chronic infarct, areas of parenchymal focal T2 hyperin-
tensity, and cerebral volume loss [14]. The prevalence of 

MRI abnormalities has been reported as 15% by Szaf-
larski et al. [17]. Moreover, as stated by Kanner et al., 
the presence of structural abnormalities on MRI can pre-
dict the prognosis and recurrence of PNES [15]. 

In contrast, IGE is usually associated with a structur-
ally normal brain on conventional MRI. Nevertheless, a 
study of 134 individuals with IGE identified abnormali-
ties in 33 patients. Reported changes included arachnoid 
cysts, cortical atrophy, signal alterations in the basal 
ganglia, enlargement of perivascular spaces, ventricular 
enlargement, white matter hyperintensities in the frontal 
lobes, hippocampal volume loss, focal gyral malforma-
tions, and gliosis in the frontal lobe area, although most 
of these (88%) were non-specific [6]. 

In addition, multifocal abnormalities were observed in 
the frontal, parietal, temporal, cerebellar, brainstem, and 
occipital areas in patients with PNES (47.8%) compared 
to the group with IGE (21.9%). However, IGE patients 
exhibited more significant temporal abnormalities in 
comparison to those with PNES (57.8% vs 21.7%) [2]. 

Comparative analyses highlight some distinctions be-
tween PNES and IGE. Multifocal abnormalities affect-
ing the frontal, parietal, temporal, cerebellar, brainstem, 
and occipital regions appear more common in PNES, 
whereas temporal lobe involvement is more frequently 
observed in epilepsy. Specifically, one study noted mul-
tifocal abnormalities in nearly half of PNES patients but 
in only one-fifth of those with epilepsy, while temporal 
lobe abnormalities were far more prevalent in the epi-
lepsy group than in PNES [14].

Morphometric changes

Morphometric analyses provide further insights into 
brain structure in PNES and IGE. Labate et al. reported 
reductions in gray matter volume within several regions 
in PNES patients, including the bilateral cerebellum, 
the right precentral and middle frontal gyri, as well as 
the right ACC and supplementary motor area [18]. Ad-
ditionally, cortical thinning was observed in areas, such 
as the right precentral and superior frontal gyri, the right 
precuneus, and the right paracentral gyrus. 

Other studies, however, have reported somewhat dif-
ferent findings. For instance, Ristić et al. noted decreased 
cortical thickness in the bilateral precentral, right ento-
rhinal, and right lateral occipital regions of PNES pa-
tients but also reported increased thickness in the insula 
and medial orbitofrontal cortices on both sides, along 
with the left lateral orbitofrontal cortex [18, 19]. 
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However, there were no differences in cortical thick-
ness or gray-white matter contrast in IGE patients com-
pared to control groups. It has also been demonstrated 
that the thalamo-prefrontal network integrity has re-
mained intact, despite alterations in functional activity 
reported in IGE patients [5]. 

A broader review of PNES-related neuroimaging has 
further highlighted associations between morphomet-
ric changes and psychiatric comorbidity. For example, 
higher depression scores have been linked to reduced 
volume in the right premotor cortex, thinner orbitofron-
tal and superior frontal gyri, and decreased paracentral 
gyrus thickness. Moreover, disease duration has shown 
an inverse correlation with cortical thickness in the left 

Figure 1. Comparison of neuroimaging findings in PNES and IGE across five key imaging modalities

Abbreviations: MRI: Magnetic resonance imaging; DTI: Diffusion tensor imaging; fMRI: Functional MRI; PET: Positron emis-
sion tomography; SPECT: Single-photon emission computed tomography.
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Table 1. Summary of the neuroimaging findings in IGE and PNES

Brain Imaging Modality IGE PNES

MRI

Brain structural 
abnormality

Usually, there are no structural brain abnormali-
ties in IGE; however, non-specific brain lesions 
have been reported, including arachnoid cysts, 
widespread cortical atrophy, basal ganglia ab-
normalities, white matter abnormalities (an en-
hanced T2 signal in the frontal lobes), decreased 
hippocampal volume, focal gyral abnormalities, 
and areas of gliosis in the frontal lobe.

Multifocal abnormalities in frontal, temporal, pa-
rietal, occipital, cerebellar, and brainstem areas 
have been observed in 40% of PNES-only patients 
(no cause and effect has been proven). 

Morphometric 
changes

No difference in cortical thickness or gray-white 
matter contrast.

Decreased gray matter volume in the bilateral 
cerebellum, right precentral gyrus, right middle 
frontal gyrus, right anterior cingulate cortex, and 
right supplementary area in PNES brains. Re-
duced cortical thickness in the right precentral gy-
rus, right superior frontal gyrus, right precuneus, 
and right paracentral gyrus.
An increase in cortical thickness in the left insula 
and bilateral medial orbitofrontal regions, along 
with a decrease in the right precentral gyrus, right 
entorhinal area, right lateral occipital area, and 
left precentral areas

DTI

Deterioration in the uncinate fasciculus and fornix 
white matter pathways.
Thalamic and corpus callosum abnormalities in 
absence seizures. Changes in the frontal lobe in 
predominant myoclonic seizures. Diffuse white 
matter alterations in the temporal and occipital 
areas. Decreased FC in the medial PFC and limbic 
regions.

More right-sided uncinate fasciculus streamlines. 
Increased FC in the left superior temporal gyrus, 
corona radiata, internal and external capsules, 
and uncinate fasciculus is linked to motor func-
tion.

fMRI

Decreased fALFF of the BOLD signal in the tha-
lamic-PFC-connecting subregion. BOLD signal de-
creases in the motor and temporal cortices and in-
creases in the ventro-basal thalamus and sensory 
cortex during the ictal phase of absence seizures. 
Altered regional cerebral blood flow (a decrease) 
has been reported in the thalamus, cingulate, cer-
ebellum, and upper brainstem (superior colliculi) 
(no cause and effect has been proven).

Increased FC values of brain regions related to 
attention, the default mode network (DMN), 
and sensorimotor areas. Enhanced synchronous 
regional activity was detected in the DLPFC, pari-
etal, and motor areas in a study of PNES patients, 
while lower activity was found in the right trian-
gular inferior frontal gyrus. Elevated FC values 
were observed in the right dorsal anterior insula 
(dAI) and posterior insula (PI), as well as the left 
putamen and superior parietal gyrus. The left 
ventral anterior insula (vAI) showed better FC 
with the right lingual gyrus, left postcentral gyrus, 
and bilateral supplementary motor area (SMA).

PET
Diffuse hypermetabolism and a rise in cerebral 

blood flow in the entire brain, particularly in the 
thalamus.

Hypometabolism in the right inferior parietal 
brain areas and bilateral anterior cingulate.

SPECT

There is an increase in cerebral blood flow during 
the ictal phase and a decrease in blood flow in 

the cerebellum, brainstem, thalamus, and cingu-
late gyrus during the interictal phase.

Hypoperfusion in the bifrontal, left frontopari-
etal, right medial temporal, right posterolateral 

frontal, and right insular areas.

MRS

Lower NAA/Cr ratio in the right and left thalamus, 
right DMPFC, and right ACC; lower choline (Cho)/
Cr ratio in the right ACC; decreased levels of NAA 

and NAA/Cr in patients with JME.

Lower NAA/Cr ratio in the right and left thala-
mus, right DMPFC, and right ACC; higher NAA/Cr 
ratio in the right DLPFC and lower NAA/Cr ratio 

in the left DMPFC; lower Cho/Cr ratio in the right 
ACC; and an increase in the ratio of glutamate 

and glutamine to creatinine in the anterior 
cingulate and medial PFC.
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insula and left precentral gyrus. Conversely, a thicker 
entorhinal cortex on the right side and atrophy in the left 
central sulcus and inferior frontal gyrus were associated 
with greater dissociation scores, suggesting a relation-
ship between structural alterations and the clinical ex-
pression of PNES [2].

DTI

DTI has been employed to investigate structural and 
connectivity changes in both IGE and PNES. By mea-
suring indices, such as fractional anisotropy (FA) and 
performing tractography, DTI provides a means of as-
sessing whether alterations in white matter pathways 
contribute to the clinical features of these conditions [5].

For example, Hernando et al. reported that PNES pa-
tients exhibited a greater number of streamlines in the 
right uncinate fasciculus compared to the left, a pattern 
not seen in healthy controls [20]. In contrast, Lee et al. 
observed enhanced connectivity in the left uncinate fas-
ciculus and superior temporal gyrus, but not on the right 
side [21]. The controversial data may be due to very 
small patient populations in these studies. In the investi-
gation by McGill et al. [5], DTI revealed that the anterior 
thalamic radiation (ATR) connecting tracts in the ante-
rior limb of the internal capsule between the thalamo-
prefrontal areas were intact in IGE patients compared to 
the control group. Nevertheless, structural abnormalities 
in the thalamus and corpus callosum have been observed 
in individuals with IGE exhibiting absence seizures. 
Additionally, alterations in the frontal region have been 
documented in patients primarily suffering from myo-
clonic seizures. In IGE patients, more diffuse impair-
ments in white matter integrity have been identified in 
the temporal and occipital areas [22].

Functional connectivity (FC) analyses further highlight 
network disruptions in IGE. Reduced connectivity be-
tween prefrontal regions and limbic structures has been 
associated with higher seizure frequency. Moreover, de-
generation has been reported in key white matter path-
ways, such as the uncinate fasciculus, which links the 
PFC to the amygdala, and the fornix, which connects the 
hippocampus with the hypothalamus. These changes un-
derscore the involvement of fronto-limbic circuits in the 
pathophysiology of generalized epilepsies [23-26]. 

fMRI

This method utilizes fluctuations in the blood-oxygen-
level-dependent (BOLD) signal to assess patterns of 
neural activity. It can be applied both in task-based set-

tings and at rest to examine FC, which reflects the degree 
of synchronization and communication among brain re-
gions [5]. 

It has been shown that in PNES, there is abnormal FC 
in the cingulate gyrus, insula, occipital cortex, frontal 
cortex, and sensorimotor cortex. Additionally, the oc-
cipital cortex’s FC density also showed a correlation 
with disease duration [27]. Other investigations demon-
strated increased activity in regions, such as the dorso-
lateral PFC (DLPFC), motor cortex, and parietal lobes, 
while simultaneously reporting reduced activation in the 
right inferior frontal gyrus—an area linked to inhibitory 
control and sensory processing. This imbalance may 
underlie the impaired regulation of involuntary behav-
iors observed in PNES. Further evidence indicates that 
PNES patients may exhibit elevated FC within the dorsal 
anterior insula and posterior insula, as well as heightened 
connectivity involving the putamen and superior parietal 
lobule. Left-sided ventral anterior insula activity has also 
been linked to stronger interactions with the lingual gy-
rus, postcentral cortex, and supplementary motor areas 
[28-32]. 

Amiri et al. demonstrated that limbic and emotional 
circuits exert inhibitory effects on executive and motor 
regions, which could explain the prevalence of abnor-
mal motor behaviors in PNES. These alterations were 
further associated with disease chronicity and cognitive 
deficits, highlighting the clinical relevance of FC dis-
ruptions [33]. 

In IGE, fMRI results emphasize the dysfunction of 
thalamo-cortical circuits. Reduced fractional amplitude 
of low-frequency fluctuations (fALFF) has been re-
ported within thalamic–prefrontal networks [5]. During 
absence seizures, dynamic changes in the BOLD sig-
nal have been observed, with decreases in motor and 
temporal cortices coupled with increased activation in 
the ventro-basal thalamus and sensory cortices [34]. 
Cerebral blood flow studies using fMRI have addition-
ally revealed hypoperfusion in structures, such as the 
thalamus, cingulate cortex, cerebellum, and superior 
colliculi, though it remains unresolved whether these 
represent primary causes or secondary effects of epilep-
tic activity [35]. 

Collectively, fMRI investigations underscore clear dif-
ferences between PNES and IGE. Although PNES is 
characterized by disrupted connectivity across networks 
involved in emotion, motor control, and executive func-
tioning, IGE is primarily associated with alterations in 
thalamo-cortical oscillatory activity. These findings pro-
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vide mechanistic insight into the divergent clinical mani-
festations of the two disorders. 

MRS

MRS offers a non-invasive method to evaluate bio-
chemical changes in the brain and has been particularly 
useful in distinguishing between IGE and PNES [8].

Several studies have documented abnormalities in 
these metabolites in IGE. Cevik et al., for example, dem-
onstrated significantly reduced N-acetylaspartate (NAA) 
concentrations in both the frontal cortex and thalamus, 
along with decreased NAA/creatine (Cr) ratios in pa-
tients with juvenile myoclonic epilepsy (JME). These 
reductions were independent of age, age at seizure onset, 
or disease duration. Moreover, neuropsychological cor-
relations revealed that higher prefrontal NAA/Cr levels 
were associated with better performance on attention 
and memory tasks, while thalamic NAA/Cr correlated 
positively with executive functions, including perfor-
mance on the Wisconsin card sorting test [36]. 

In contrast, PNES has been linked to distinct metabolic 
signatures. Studies have reported elevated Glx/Cr ratios 
within the ACC and medial prefrontal regions, which 
were found to correlate with measures of alexithymia, 
anxiety, and symptom severity. These findings support 
the notion that PNES involves dysfunction within emo-
tion-regulation networks [37].

Simani et al. further compared metabolic alterations 
across both disorders. Their results indicated decreased 
NAA/Cr ratios in the bilateral thalamus, right dorsome-
dial PFC (DMPFC), and right ACC in both PNES and 
IGE groups. Additional disorder-specific differences 
were also observed: PNES patients exhibited reduced 
NAA/Cr ratios in the left DMPFC and increased NAA/
Cr ratios in the right dorsolateral PFC (DLPFC), whereas 
IGE patients did not show these patterns. In both groups, 
decreased NAA/Cr ratios were linked to worse cognitive 
outcomes, reinforcing the association between metabolic 
dysfunction and impaired network performance [8]. 

Collectively, MRS findings emphasize that while 
IGE and PNES share some neurochemical alterations, 
particularly within thalamo-prefrontal networks, each 
disorder also displays unique metabolic profiles. These 
differences may serve as potential biomarkers for dif-
ferential diagnosis. 

PET

PET, using 18FDG or fluorodeoxyglucose F 18, can 
indirectly measure brain activity by quantifying glucose 
uptake in the brain regions of patients with PNES and 
IGE. This imaging modality allows for assessing hyper- 
and hypometabolism in these regions, providing insight 
into their metabolic differences [2]. 

Interictal 18F-FDG-PET in PNES patients has demon-
strated bilateral anterior cingulate and right inferior pa-
rietal hypometabolism. However, these findings can be 
due to psychiatric comorbidities [38]. 

Diffuse hypermetabolism has been observed in IGE 
patients during the ictal phase compared to healthy indi-
viduals and during the interictal phase. In addition, dur-
ing hyperventilation-induced absence with generalized 
spike-wave discharge, cerebral blood flow increases in 
the entire brain (14.9%), particularly in the thalamus 
(3.9-7.8%) [34].

SPECT

SPECT enables the evaluation of cerebral blood flow 
and metabolic activity and has been used in both PNES 
and IGE. In PNES, studies employing SPECT and sub-
traction ictal SPECT co-registered with MRI (SISCOM) 
have identified areas of hypoperfusion in up to one-third 
of patients. The most commonly affected regions include 
the bifrontal cortex, left frontoparietal areas, right medi-
al temporal lobe, posterolateral frontal cortex, and right 
insula. These abnormalities further support the involve-
ment of distributed cortical and subcortical networks in 
PNES pathophysiology [39-41].

A SPECT investigation of pediatric absence epilepsy 
(IGE subtype) found an increase in cerebral blood flow 
with the incidence of absences, but no localized increas-
es [34]. Using SPECT, Joo et al. discovered a decrease in 
blood flow in the cerebellum, brain stem, thalamus, and 
cingulate gyrus during the interictal phase [35]. 

Conclusion

The pathophysiology of PNES and IGE appears to be 
different based on imaging and functional differences. 
As a result, it is best to consider distinct treatment and 
management strategies for each. Furthermore, based on 
imaging abnormalities in PNES patients, the condition is 
assumed to be of a more organic nature, and patient care 
should be based on this understanding. 
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Limitations

The present review has several limitations. First, it 
concentrated exclusively on imaging findings and did 
not address other biological, psychological, or social 
contributors to PNES and IGE. Second, many of the 
studies included were based on relatively small cohorts, 
which may reduce the generalizability of their conclu-
sions. Third, potential confounders, such as antiepilep-
tic medication use, psychiatric comorbidities, or other 
neurological conditions, were not uniformly controlled 
across studies. Fourth, while imaging abnormalities are 
described, the precise mechanisms linking these changes 
to clinical symptoms remain insufficiently explained. Fi-
nally, because the review did not include a comparison 
group with other seizure disorders, its ability to distin-
guish PNES and IGE from additional epilepsy subtypes 
is limited. 

This paper primarily focuses on the use of imaging 
techniques and does not explore other potential factors 
that may contribute to the development and manifesta-
tion of PNES and IGE. The sample size of the study 
may be small, limiting the generalizability of the find-
ings. The paper did not consider potential confound-
ing variables, such as medication use or comorbidities, 
which may impact the results. Additionally, this paper 
did not provide a clear explanation of the mechanisms 
underlying the observed brain abnormalities in PNES 
and IGE patients. Also, the study did not include a con-
trol group of individuals with other types of seizures, 
making it difficult to compare the findings between 
PNES and IGE patients.
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