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Background: Applying efficient feature extraction and selection methods is essential in improving 
the performance of machine learning algorithms employed in brain-computer interface (BCI) systems.

Objectives: The current study aims to enhance the performance of a motor imagery-based BCI 
by improving the feature extraction and selection stages of the machine-learning algorithm 
applied to classify the different imagined movements.

Materials & Methods: In this study, a multi-rate system for spectral decomposition of the signal 
is designed, and then the spatial and temporal features are extracted from each sub-band. To 
maximize the classification accuracy while simplifying the model and using the smallest set of 
features, the feature selection stage is treated as a multiobjective optimization problem, and the 
Pareto optimal solutions of these two conflicting objectives are obtained. For the feature selection 
stage, non-dominated sorting genetic algorithm II (NSGA-II), an evolutionary-based algorithm, is 
used wrapper-based, and its effect on the BCI performance is explored. The proposed method is 
implemented on a public dataset known as BCI competition III dataset IVa.

Results: Extracting the spatial and temporal features from different sub-bands and selecting the 
features with an evolutionary optimization approach in this study led to an improved classification 
accuracy of 92.19% which has a higher value compared to the state of the art. 

Conclusion: The results show that the proposed improved classification accuracy could achieve a 
high-performance subject-specific BCI system.
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Introduction

n the last decade, brain-computer interfaces 
(BCIs) have emerged as powerful commu-
nication systems and enabled humans to in-
teract with their surroundings through a new 
non-muscular channel using control signals 

generated from the brain [1]. Amongst all modalities used 
for acquiring brain activities, electroencephalography (EEG) 
is the most frequently employed technique [2, 3]. BCIs have 
enabled users to command external devices merely by imag-
ining the movement in their limbs. The process begins via 
motor imagery (MI) signals in which sensorimotor rhythms 
originating from the primary motor cortex provide data are 
translated to commands and sent to external devices [4].

Designing a motor imagery BCI can be treated as a 
supervised machine-learning algorithm that aims to 
identify the user intention by discriminating the classes 
existing in the data. Applying efficient feature extraction 
and selection methods is fundamental in improving ma-
chine learning algorithms’ performance. In classification 
problems, minimizing the error rate while simplifying 
the model using a smaller set of features are the key fac-
tors to achieving a higher performance system. Various 
techniques for extracting features have been introduced 
in the literature. Features are either extracted from the 
time and frequency domains via spatial techniques or a 
combination of these domains [5]. Selecting the most in-
formative and discriminative subset of features and then 
feeding the classifier with these salient features helps 
the motor imagery BCI to identify the intended motor 
movements more accurately [4]. Two approaches are 
primarily adopted in feature selection applications: Filter 
methods, in which an autonomous assessment criterion 
is used to evaluate the goodness of a subset of features 
generated by a search strategy, and wrapper methods, 
which use the prediction output of a classifier as an ob-
jective function to evaluate the feature subset [6]. Since 
wrapper techniques are developed based on the interac-
tion between the classifier and the features, they gener-
ally outperform filter methods in terms of classification 
accuracy [7, 8].

In motor imagery BCIs, sensorimotor rhythms, which 
are oscillations observed in mu (8-13 Hz) and beta (13-
30 Hz) frequency ranges, contain the most helpful in-
formation regarding motor imagery tasks [9]. While de-
signing a machine learning pipeline for a BCI system, 
selecting the most salient features can be treated with a 
multiobjective optimization approach in the sense that 
we are facing two contradictory objectives: Maximizing 
the classification accuracy (or minimizing the classifica-
tion error rate) while minimizing the number of features 
[10]. Obtaining the Pareto optimal solutions that are the 
trade-off responses of these two conflicting objectives 
can provide us with a set of non-dominated solutions.

Two main criteria need to be taken care of while choos-
ing a feature selection algorithm: Search strategy and 
subset quality. The search strategies mainly used in BCI 
studies are either “sequential,” in which features are add-
ed or removed successively one at a time, or “heuristic,” 
in which evolutionary algorithms can be stated as the ex-
ample [11, 12]. Heuristic search algorithms have proved 
to possess simplicity, flexibility, and high efficiency. To 
employ an evaluation technique for assessing the good-
ness of the feature subset, a fitness function can be de-
fined using nature-inspired evolutionary algorithms, 
which tend to solve real-world problems with compli-
cated nonlinear search spaces more robustly [13, 14]. 

In this study, the performance of an MI-based BCI is 
enhanced by improving the feature extraction and selec-
tion stages of the proposed machine-learning algorithm 
[15]. To this end, a multi-rate system for spectral decom-
position of the signal is designed, and then the spatial 
and temporal features are extracted from each sub-band. 
To maximize the classification accuracy while simpli-
fying the model and using the smallest set of features, 
the feature selection stage is treated as a multiobjective 
optimization problem, and the Pareto optimal solutions 
of these two conflicting objectives are obtained. To ex-
plore the feature space and select the salient features, 
non-dominated sorting genetic algorithm II (NSGA-II), 
an evolutionary-based algorithm, is used wrapper-based, 
and its impact on the BCI performance is explored. The 

I

Highlights 

● A novel approach is proposed for improving the feature extraction and selection stages of the machine-learning 
algorithm applied in a motor imagery-based brain-computer interface (BCI).

● An improved classification accuracy is obtained in this study, which highlights the efficiency of the proposed ap-
proach and achieving a high-performance subject-specific BCI system.
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proposed method is implemented on the public dataset: 
BCI competition III dataset IVa [16]. This study’s pro-
posed approach has helped achieve a high-performance 
subject-specific system tailored to each subject’s need. 
Finally, we thoroughly discussed and compared our re-
sults with other studies that tried to solve the classifica-
tion problem on the dataset in the “results” and “discus-
sion” sections of this research paper.

This study aims to enhance the performance of an MI-
based BCI by improving the feature extraction and fea-
ture selection stages of the machine-learning algorithm 
applied to classify the different imagined movements. 
The contribution of this study compared to the state 
of the art is an improved classification accuracy value 
compared to similar studies on the same dataset.

Materials and Methods

Like any other field, the machine learning approach 
applied in BCI systems usually consists of the following 
phases: Pre-processing, feature extraction, feature selec-
tion, and classification. The detailed approach used in 
each stage is explained in the following sections.

Dataset and pre-processing

The dataset used in this study was provided by 
Fraunhofer FIRST, Intelligent Data Analysis Group [17]
in 2004. It is known as dataset Iva of BCI competition 
III. The EEG signals were recorded from 5 healthy sub-
jects: aa, al, av, aw, and ay. Subjects sat in a comfortable 
chair with arms resting on armrests. This data set con-
tains only data from the 4 initial sessions without feed-
back. Visual cues were active for 3.5 s to help subjects 
perform several motor imagery tasks, of which only the 
information related to the right hand and foot is publicly 
available. There were two types of visual stimulation: 1) 
Where targets were indicated by letters appearing behind 
a fixation cross (which might nevertheless induce little 
target-correlated eye movements), and 2) Where a ran-
domly moving object indicated targets (inducing target-
uncorrelated eye movements). The recording was made 
using BrainAmp amplifiers and a 128-channel Ag/AgCl 
electrode cap. Next, 118 EEG channels were measured 
at positions of the extended international 10/20-system. 
The data were acquired from 118 channels, and 280 tri-
als for each subject were recorded. The signal was band-
pass filtered between 0.05 and 200 Hz and then down-
sampled from 1000 Hz to 100 Hz by the provider of the 
dataset. Common average reference (CAR) was used to 
remove the common noise and artifacts in the signal. 

The formulation for calculating the CAR filter is shown 
in Equation 1 [18].

1. xi
CAR (t)=xi (t)-1/N ∑N

(j=1)x
j (t)

In the above Equation, xi
CAR (t) is the filtered signal of 

channel i while xi (t) and xj (t) are the potential of ith and 
jth channels with respect to the reference, respectively. N 
is the total number of channels.

Feature extraction 

In the motor imagery tasks, the subject is asked to 
imagine performing a specific task for a fixed duration, 
which in this study is 3.5 s. These fixed time intervals are 
called trials in the context of the motor imagery tasks. 
During the data acquisition, the dataset provider labels 
each trial with a proper class according to the imagined 
movement by the subject. In the dataset used in this 
study, the information about the addresses of the start 
time point of each trial is given. It is also known that 280 
trials for each subject are recorded. Hence, by having 
the information about the start time point and duration 
of each trial, all the trials rich in the relevant information 
for the task at hand are separated from the original sig-
nal. Then, features are extracted from each trial. 

Selecting subject-specific frequency ranges in motor 
imagery-based BCIs leads to extracting more informa-
tive features and designing a BCI system tailored to 
each subject’s need. Hence, in this study, for the feature 
extraction stage, a multi-rate system for spectral decom-
position of the signal is constructed. Then, spatial and 
temporal features are extracted from each sub-band. To 
this end, a b-channel filter bank comprising b analysis 
filters is designed [19]. As mentioned before, mu and 
beta bands are rich in motor imagery-related informa-
tion. Still, the sub-bands of mu and beta with the most 
helpful information might slightly differ in different 
subjects. Thus, the frequency band of 8-30 Hz is band-
pass filtered into sub-bands with 4 Hz intervals overlap-
ping by 2 Hz using fifth-order Butterworth filters. After 
constructing the bank of filters, it is applied to each trial. 
The features from both spatial and temporal domains 
are extracted from each sub-band, leading to a deeper 
insight into the characteristics of the EEG data. The ar-
chitecture of the proposed method in this study is repre-
sented in Figure 1.
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Spatial features

The common spatial pattern (CSP) algorithm is one of 
the most used feature extraction techniques for handling 
MI signals. By providing the optimized spatial filters, 
the CSP algorithm helps the multichannel EEG data to 
be mapped to a new space in which the data variance 
from one class is maximized. In contrast, the data vari-
ance from the other class is minimized [20]. 

The CSP algorithm can be implemented by extremiz-
ing the objective function JCSP(w) as brought in Equation 
2 and finding the extremum spatial filters w [10].

2. JCSP(w)= =
wX1X1

T wT

wX2 X2
T wT

wC1w
T

wC2w
T

In the above Equation, X1 and X2 are N×T pre-pro-
cessed single-trial EEG signals for each class in which 
N is the number of channels, and T is the number of 
samples in each trial. XT

1 and XT
2 are the transpose ma-

trices of X1 and X2, respectively. Equation 2 can also be 
calculated by the use of C1 and C2 which are the average 
covariance matrices of each trial from classes 1 and 2, 
respectively. Since JCSP(w) is a Rayleigh quotient, it can 
be solved via the generalized value decomposition of co-
variance matrices, which leads to constructing an N×N 
projection matrix PCSP. Once the PCSP is obtained, the spa-
tial filters w can be obtained by arranging the eigenval-
ues in descending order, arranging their corresponding 
eigenvectors, and then choosing the first m columns and 
last m columns of the projection matrix [21].

The pre-processed single-trial EEG signals, X1 and X2, 
are then projected into the low-dimensional spatially-
filtered signals Y1 and Y2 with the Equation 3: 

3. Yi=WT Xi; i=1 and 2

, where WT is the transpose of the N×2m matrix con-
taining the first and last m columns of the projection ma-
trix. m can be set to 1 in the same manner as what is used 
in references [22, 23].

In the final stage of implementing the CSP algorithm, 
the features are obtained by calculating the variance of 
the spatially filtered signals by Equation 4 [10]:

4. Fi=var(WT Xi ); i=1 and 2

Temporal features

After band-pass filtering mu and beta rhythms into 
different sub-bands, as explained earlier, the statistical 
measures of the signal are extracted from each trial in 
the time domain and then, alongside the extracted spatial 
features, are fed to the next stage of the machine-learn-
ing algorithm. Mean, variance, skewness, and kurtosis 
are the temporal features extracted in this study, giving 
us detailed information about the time domain features 
extracted within a specified frequency range. 

Evolutionary-based feature selection

In this paper, by using evolutionary algorithms, heuris-
tic search is applied to the problem of feature selection, 
and a wrapper-based approach is used to select the subset 
of salient features. To this end, NSGA-II, a multiobjec-
tive optimization technique, is used to tackle the feature 
selection problem. It is an elitist technique with lower 
computational complexity than similar techniques or 
its earlier version, NSGA [24]. NSGA-II, a population-
based algorithm, starts with a randomly generated popu-
lation of size npop and evaluates candidate solutions itera-
tively to find the global optima in the search space [25]. 

Similar to the genetic algorithm technique, each mem-
ber in the population is an n-bit chromosome. In con-
trast, for the feature selection problem proposed in this 
study, the algorithm is defined in the binary mode (i.e. 
chromosome bits only possessing 0 or 1), and n is the 
total number of features extracted in the previous stage 
of the machine learning algorithm. Each bit of the chro-
mosome represents the existence or nonexistence of a 
feature in the feature space by being 1 or 0, respectively. 

Figure 1. The architecture of the proposed method
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Figure 2. The overview of the domination criterion in the NSGA-II algorithm

Since a wrapper approach is used for the feature selec-
tion problem in this study, the cost function for evaluat-
ing the candidate solutions is defined as the classification 
error E obtained by feeding the classifier with the select-
ed features where E=1-A and A is the average of 10-fold 
cross-validation classification accuracy of the train data 
using the selected features.

In the multiobjective optimization problem stated in 
this study, the trade-off responses of the two conflict-
ing objectives, maximizing the classification accuracy 
(or minimizing the classification error rate) while mini-
mizing the number of features, should be obtained. Let 
the number of selected features be nf. Once the pairs 
of candidate solutions with the configuration (nf.E) are 
obtained, these solutions should be sorted using the 
dominance criterion. The “crowding distance” criterion, 
which is used to sort the population in each generation, 
and the overview of the domination criterion introduced 
in [24] used in the NSGA-II algorithm are demonstrated 
in Figure 2. 

Following this stage, the crossover operator on pairs 
of randomly selected members of the population as par-
ents and the mutation operator on a number of randomly 
selected chromosomes are applied, and a new popula-
tion is produced and then evaluated in the same manner. 
Finally, by merging the initial population, pop, with the 
population generated by crossover, popc, and by muta-
tion, popm, and sorting them by applying the dominance 
criterion once again and then selecting the first npop mem-
bers of the population, the Pareto optimal front for the 
first iteration of running NSGA-II algorithm, as well as 

the next generation for use in the next iteration is pro-
duced. The flowchart of the feature selection process us-
ing the NSGA-II algorithm is shown in Figure 3. In this 
study, the parameters of the NSGA-II algorithm are set 
as follows: The population size is 50; the crossover rate 
and the mutation rate are 0.6 and 0.05, respectively; and 
the number of iterations is set to 100. 

Classification 

After the feature selection stage, the best subset of fea-
tures is fed to a trained classifier that can identify the 
class of unlabelled trials in the test phase more accurate-
ly, leading to the higher performance of the BCI system. 
This paper uses a classic linear support vector machine 
as the classifier. 

Results

The following actions were conducted to classify the 
MI signal and determine the subjects’ intention to design 
a subject-specific brain-computer interface that enables 
each subject to use the BCI with the best performance 
possible. The total number of trials for each subject in 
this dataset is 280. Still, the number of labeled and un-
labelled data (train and test data) assigned by the dataset 
provider [17] for different subjects differs. The percent-
ages of labeled data for subjects aa, al, av, aw, and ay 
are 60%, 80%, 30%, 20%, and 10%, respectively. The 
labeled trials and their corresponding spatial and tem-
poral features are used as the training data for the clas-
sifier. To tackle the problem of handling the subjects 
with a high number of unlabelled trials, the employed 
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approach in this study is to construct a pool of features 
using the correctly classified trials of those subjects with 
better performance. To this end, in this study, the BCI 
design process begins with subject al, which possesses 
the highest number of labeled trials that can be used as 
the train data. Once the classification of the unlabelled 
trials of al subjects is done, its data are passed to the next 
subject to be used as supplementary data. This strategy 
of data construction ensures that it makes up for the lack 
of trained data in other subjects. To develop the most ef-
ficient configurations to build up the trial pools for dif-
ferent subjects, the results obtained by Dai et al. [26] are 
considered. However, the final configurations employed 
in this study differ from those used in the study of Dai 
et al. [26]. Several studies on this dataset have reported 

that after al, the second subject that can achieve a high 
performance is aw [25–30]. This result is somewhat 
counterintuitive considering the high proportion of unla-
belled trials (80%). A possible reason might be the high-
er BCI literacy of subject aw compared to other subjects 
[31]. In this study, for subject aw, the positive impact of 
constructing a pool of trials can be seen in the 3.57% 
increase in classification accuracy. That is to say, after 
feature selection, subject aw achieved the classification 
accuracy of 94.64% by using subject al as its source of 
supplementary data. In comparison, this percentage was 
91.07% by just using its data. By inspection, the con-
figurations of the supplementary trials for subjects ay, 
aa, and av are set as al, al+aw, and al+ay, respectively. 
Sixty-six features are extracted from each trial, of which 
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Figure 4. The set of Pareto optimal solutions of the non-dominated sorting genetic algorithm ii for each subject

22 are spatial features extracted by the CSP algorithm, 
and 44 are the statistical measures of the time domain. 
Table 1 presents the classification accuracy achieved in 
different feature extraction and selection stage scenarios.

Figure 4 illustrates the set of Pareto optimal solutions 
of the NSGA-II algorithm for each subject in this data-
set. The final classification accuracies for each subject 
are selected from the non-dominated solutions in the Pa-
reto front obtained by applying multiobjective optimiza-
tion for each subject. As seen in Figure 4, the error rate 
and the number of selected features are negatively cor-
related, which necessitates making a trade-off between 
these two conflicting objectives and making a decision 
to sacrifice the classification accuracy and use fewer fea-
tures and decrease the computational cost or increase the 
computational complexity by using more features and 
achieve higher classification accuracy. 

A closer inspection of Figure 4 shows that subject al 
has achieved the error rate 0 (classification accuracy of 
100%) when 21 features are used, which is about less 
than one-third of the total features. It can also be seen 
that 21 features for subject aw and 19 features for sub-
ject ay provide the minimum error rate for these subjects, 
and the classification accuracies of 94.64% and 93.25% 
are achieved, respectively. Subject aa shows a slightly 
higher error rate than the mentioned subjects, and the 
classification accuracy of 91.98% is achieved with 24 
features. It can be seen that the Pareto front of subject av 
is situated above all subjects, and this subject possesses 
the lowest classification accuracy, which is 81.07%. A 
possible explanation for the low classification accuracy 
achieved by av might be due to this subject’s low signal-
to-noise ratio or lack of concentration. Other studies also 
report this low classification accuracy for subject av on 
this dataset [25–27, 29, 32, 33].

Table 1. Comparing the results of applying different methods in the feature extraction and feature selection stages

Is Filter Bank 
used? Type of Feature

Feature 
Selec-
tion

Tech-
nique

Num-
ber of 

Extracted 
Features

Num-
ber of 

Selected 
Features

Classification Accuracy (%) Average Ac-
curacy (%)

aa al av aw ay

No Spatial - 2 2 58.03 72.23 53.17 69.12 62.81 62.95

No Spatial+temporal - 6 6 64.35 85.45 67.31 78.17 72.96 73.65

Yes Spatial NSGA-II 22 7 85.97 91.56 78.46 88.63 90.15 86.95

Yes Spatial+Temporal NSGA-II 66 21 91.98 100 81.07 94.64 93.25 92.19 (cur-
rent study)

NSGA-II: Non-dominated sorting genetic algorithm II.
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Table 2 compares the results of the proposed method in 
this study with other studies on this dataset. Higher clas-
sification accuracy achieved with this study’s applied 
approach highlights the proposed method’s effectiveness 
for optimizing the BCI system. 

Discussion 

One limitation of this study is the inability to provide 
a comparative analysis of the computational cost of our 
proposed algorithm with other similar studies on the 
same dataset. This limitation is attributed to the absence 
of reported values for this parameter in other comparable 
studies. Although our research does not conclusively es-
tablish the superiority of our algorithm’s computational 
efficiency over existing ones, the heuristic approach 
suggests the potential for faster performance in our pro-
posed method. Furthermore, the NSGA-II algorithm is 
an elitist technique with the computational complexity 
of O(MO2) (where M is the number of objectives and Q 
is the population size), which is significantly faster than 
the similar techniques or its earlier version NSGA with 
the computational complexity of O(MO3) and this can 
lead to a quicker approach compared to the other algo-
rithms used in the similar studies [24].

Another limitation is that the proposed algorithm in this 
study is applied to the signals of the healthy subjects ex-
isting in a public dataset and not to subjects with other 
brain health conditions. Thus, future research should 
assess the performance of our proposed algorithm on 
individuals with brain disorders, namely post-stroke pa-
tients. 

Conclusion

This study introduces a novel methodology to enhance 
the feature extraction and feature selection stages within 
a machine learning algorithm employed in an MI-based 
BCI. The approach used in this study emphasizes the 
design of a BCI system that is highly customizable to 
individual subjects, accounting for subject-specific fre-
quency ranges in motor imagery-based BCIs. Spatial and 
temporal features were extracted from each sub-band by 
designing a multi-rate system for spectral decomposi-
tion. Afterward, the feature selection stage was treated 
as a multiobjective optimization problem, prioritizing 
maximal classification accuracy, model simplification, 
and using the smallest feature set. Then, the Pareto opti-
mal solutions for these conflicting objectives were suc-
cessfully determined. Furthermore, exploring feature 
space and selecting salient features were accomplished 
using NSGA-II in a wrapper-based manner, with a de-
tailed examination of its impact on BCI performance. 
Application of the proposed method to the BCI competi-
tion III dataset IVa yielded significantly improved clas-
sification accuracy compared to previous studies on the 
same dataset. This outcome highlights the efficiency of 
our approach, demonstrating its potential for achieving a 
high-performance, subject-specific BCI system.

Ethical Considerations

Compliance with ethical guidelines

Since the dataset used in this article was already pub-
licly available on the BCI Competition webpage, getting 
the ethical approval was not required.
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Table 2. Comparing the results of the proposed method in this study with other studies on this dataset

Studies Technique
Classification Accuracy (%) Average Ac-

curacy (%)aa al av aw ay

Ang et al. 2008 [32] Filter bank CSP 94.00 97.00 86.00 93.00 93.00 88.00

Thomas et al. 2009 [27] Discriminant filter CSP 90.21 98.86 77.80 97.85 94.23 91.75

Lu et al. 2015 [28] Structure-constrained matrix fac-
torization 64.21 92.67 60.00 72.58 55.56 68.94

Zhang et al. 2015 [29] Sparse filter bands CSP 91.64 98.67 77.43 98.03 94.69 92.05

Das et al. 2016 [30] Subject-specific CFIS 82.14 100 63.27 83.04 60.32 77.75

Dai et al. 2018 [26] Transfer kernel CSP 68.10 93.88 68.47 90.58 84.65 81.14

Proposed method Multiobjective spatial-temporal 
feature optimization 91.98 100 81.07 94.64 93.25 92.19
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