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Background: Epilepsy is a brain disorder that changes the basin geometry of the oscillation of 
trajectories in the phase space. Nevertheless, recent studies on epilepsy often used the statistical 
characteristics of this space to diagnose epileptic seizures.
Objectives: We evaluated changes caused by the seizures on the mentioned basin by focusing on 
phase space sorted by Poincaré sections.
Materials & Methods: In this non-interventional clinical study (observational), 19 patients with 
generalized epilepsy were referred to the Epilepsy Department of Razavi Hospital (Mashhad, Iran) 
between 2018 and 2020, which their disease had been controlled after diagnosis and surgery. In 
evaluating the effects of this disorder on the oscillation basin of the EEG trajectories, we used the 
MATLAB@ R2019 software. In this computational method, we sorted the phase space reconstructed 
from the trajectories by using the radial Poincaré sections and then extracted a set of the geometric 
features. Finally, we detected the normal, pre-ictal, and ictal modes using a decision tree based on 
the Support Vector Machine (SVM) developed by features selected by a genetic algorithm.
Results: The proposed method provided an accuracy of 94.96% for the three classes, which 
confirms the change in the oscillation basin of the trajectories. Analyzing the features by using t test 
also showed a significant difference between the three modes.
Conclusion: The findings prove that epilepsy increases the oscillations basin of brain activity, but 
classification based on the segment cannot be applicable in clinical settings.
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Introduction 

n today’s modern society, humans are 
under various stresses in their daily 
lives, and half of them approximately 
suffer from various neurological dis-
orders [1]. According to the reports of 
the world health organization, epilepsy 

is one of these neurological disorders, which has ap-
proximately affected 50 million people worldwide [2]. 
Also, the International Epilepsy Association (ILAE) has 
reported that 1.5% of adults and 2% of children suffer 
from epilepsy worldwide [3]. If epilepsy is detected and 
diagnosed on time, it can be treated in 75% of patients 
by using medication or surgery [4]. This outcome is an 
essential factor in family and community health, too [5].

Currently, EEG is a cheap and straightforward method, 
which is also informative enough for epilepsy diagno-
sis [6]. However, epilepsy is a transient electrical storm, 
which may happen once a night and day, so its evalu-
ation in the long-term records of EEG signals is time-
consuming and tedious for neurologists. Accordingly, 
researchers in recent years have tried to overcome this 
limitation and offered different computer-based recogni-
tion algorithms for epilepsy. They mainly include pro-
cessing techniques based on time [7, 8]; frequency [9]; 
and time-frequency, such as wavelet transform [10-12], 
Winger-Will distribution [13], and empirical mode de-
composition [11, 14]. Some of these algorithms have 
also used the feature selection methods, such as se-
quential [15-17] and random [18, 19] search strategies, 
which usually improve the computer-based recognition 
algorithms by removing redundant features. In this re-
gard, some of these algorithms have also employed the 
feature extraction methods, such as principal component 
analysis [20], independent component analysis [21, 22], 
and linear discriminant analysis. They improve the algo-
rithms by transferring features to a new space. Although 
these techniques have provided relatively good results 
for diagnosing the epileptic seizures in the EEG records, 
studies based on the nonlinear dynamic theory currently 
expresses that the quantities obtained from the time and 

frequency domain are not enough to evaluate all the 
behaviors of this system due to the nonlinear dynamic 
nature of the nervous system [23, 24]. Accordingly, a re-
markable part of recent research in evaluating epileptic 
seizures by using the EEG signals has focused on non-
linear dynamic processing such as Lyapunov exponent 
[25], correlation dimension [26-28], fractal dimension 
[29], and entropy of phase space [30]. These research 
studies have generally shown that techniques based on 
the nonlinear dynamic methods by evaluating the non-
linear dynamic aspects of brain activities can make a sig-
nificant contribution to the system identification during 
epilepsy in addition to improving the diagnosis of epi-
lepsy. Interestingly, some studies have used a combina-
tion of linear and nonlinear dynamic processing to diag-
nose epileptic seizures [6, 31] and have shown that these 
combinations can improve the diagnosis of epilepsy. 

Phase space is one of these nonlinear techniques that 
can be efficient in detecting variations created in the ac-
tivity of attractors. This technique is a pattern that can 
describe the evolution of trajectories obtained from the 
delayed or spatial phases of Electroencephalography 
(EEG) signals. It is one of the tools that have already 
attracted many researchers [32-35]. In this regard, Yag-
hoobi et al. [36] used the tangent and hyperbolic tangent 
phases for establishing a new phase space. They claimed 
that this new space could detect epileptic seizures with 
significant accuracy by a simple threshold. Sharma and 
Pachori [37] also provided a new feature extraction 
method based on the phase space reconstructed from 
the EEG signal for detecting epileptic seizures, so that 
they first used Empirical Mode Decomposition (EMD) 
and decomposed the EEG signals into the intrinsic mode 
functions. Since the EMD outputs are the components 
of symmetrical Amplitude and Frequency Modulation 
(AM-FM) and have an oscillating nature, these research-
ers evaluated the geometry of phase space reconstructed 
from the EMD outputs for detecting the epileptic sei-
zures in the EEG signals. They claimed that their method 
can be employed for diagnosing epilepsy. Zabihi et al. 
[38] also provided a different method for separating the 
epileptic seizures by using phase space, so that they first 
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● Epilepsy increases the oscillation basin of the brain electrical activities.

● The size of the statistical population severely affects the classification accuracy.

● Classification based on EEG segments is not suitable for clinical conditions.
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provided a new two-dimensional phase space by using 
an algorithm of phase extraction based on the Principal 
Component Analysis (PCA) and then developed classi-
fiers based on statistical features extracted from the col-
lision of phase space trajectories with a linear Poincaré 
section for various subjects. These researchers finally 
claimed that the results of their method were superior to 
that of other diagnostic methods.

Regarding the Poincaré section, Sharif and Jafari [39]
argued differently. They first fitted a two-dimensional 
page on the points of three-dimensional phase space by 
using the genetic algorithm for estimating the collisions 
with the two-dimensional Poincaré section. Then, they 
investigated the sensitivity of a support vector machine 
developed based on the phase space points located in the 
neighborhood of the fitted page for diagnosing epileptic 
seizures. To investigate the effects of the epileptic sei-
zures in the high phase space, Luckett et al. [40] recon-
structed the phase space and applied it to the convolu-
tional neural network. They tried to show that variations 
created in the high dimensions of the phase space can 
provide valuable information for diagnosing and predict-
ing the epileptic seizures. Although these methods could 
partly reveal different aspects of phase space (such as 
the amount of phase scattering), they could not provide 
enough information about the volume and geometry of 
the oscillation basin of EEG trajectories in the phase 
space. Therefore, in this study, we evaluated the geome-
try of the oscillation basin of phase space trajectories re-
constructed from the EEG signals of epileptic patients by 
focusing on a phase space sorted by a set of radial linear 
Poincaré sections in normal, pre-ictal, and ictal modes.

Materials and Methods 

Study subjects

In this non-intervention clinical study (observational), 
we used the EEG records of 19 patients with generalized 
epilepsy aged 25-35 years, 5 of them were female. These 
records had been selected from EEG archive recorded 
from patients referred to the Razavi Hospital Epilepsy 
Department (Mashhad City, Iran) from 2018 to 2020 for 
the diagnosis and treatment of epilepsy. In this selection, 
the EEG records relevant to patients had also been se-
lected that their disease had been controlled after diag-
nosis and surgery.

For monitoring and labeling the seizures in these long-
term EEG records, we got assistance from a neurologist 
(H.NK), which is supported by Imam Reza International 
University. According to these labels, we had generally 

received about 4 hours and 15 minutes from 228 (12 
× 19) hours of the EEG records, which 92.8 and 31.3 
minutes of them were also relevant to the pre-ictal and 
ictal modes, respectively. The rest of these signals were 
normal EEG signals, cut from two minutes before the 
ictal mode. All of these EEG signals according to the in-
ternational 10–20 system were recorded from the FP1, 
FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, 
T5, T6, Fz, Cz, and Pz channels as the unipolar mea-
surement and by using the Natus recording system made 
in the United States. Its sampling frequency and cutoff 
frequencies of bandpass filter are 256 Hz and 0.1-70 Hz, 
respectively.

For determining the minimum sample size (N), the fol-
lowing method was also used (Equation 1) [41]:

1. N=
Z2-aP(1-P)

d2

, where a, Z, and d are error level, confidence level, and 
acceptable error for research, respectively. They have 
been usually considered 0.05, 1.96, 0.05, respectively. 
P is also the prevalence rate of epilepsy in developing 
countries, which is almost equal to 0.012 according to a 
previous research (Equation 2) [42].

2. N=
1.962-0.05×0.012×(1-0.012)

0.052  =17.3 <19

According to this relationship, 19 patients were enough 
samples for this investigation.

Our method is a new computational neuroscience 
method. In the preprocessing phase, we first removed 
motion artifacts resulting from eye muscles and other 
body movements by using a user-based computerized 
approach. In this approach, the user determines the 
threshold required for cutting and removing the motion 
artifacts. Then, we filtered the signals of 19 recorded 
from the 19 EEG channels by a sixth-order low-pass 
Butterworth filter with the 40 Hz cutoff frequency for 
removing high frequencies and power line noises. Then, 
we partitioned these EEG signals into segments of 10 s 
without any overlap. In this research, all analyzes were 
performed in MATLAB separation software. 

Phase space sorted by linear Poincare sections

Phase space is a space that can represent the status of 
the system. It is unlike the state space that depicts the 
status of the system according to the state variables. It 
can be developed by any delayed or spatial phase taken 
from system processes [43]. Therefore, this space, like 
the state space, does not need to know the system state 
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variables and can be appropriate (in addition to the deter-
ministic systems) for systems, such as the human brain, 
which their state variables are not known.

Furthermore, based on the taken theorem, a type of 
these phases, which can be used for reconstructing the 
phase space, is the delayed phase [43, 44]. This space 
can depict the structure of the oscillation basin relevant 

to the phases of a system by reconstructing a trajectory 
from the variations of system activities over time. 

For evaluating this space structurally and functionally, 
we need a technique that can quantify the geometric and 
functional characteristics of the space relevant to the sys-
tems with complex behaviors such as chaotic and biotic 
[44]. One of the techniques, which is now available to 

Figure 1. EEG results

A: The two-dimensional phase space of an EEG segment sorted by the radial, linear Poincaré sections and the boundary points of 
oscillation basin; B: Computing the approximate area of oscillation basin by the sum of the triangular areas created from the bound-
ary points of the basin and the origin of Cartesian coordinates; C: The curve of θ variations versus the area estimation error of oscil-
lation basin of EEG trajectories; D: The effect of τ parameter on the area of oscillation basin of EEG trajectories in the O2 channels.
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evaluate this space, is the phase space sorted by a set 
of linear Poincaré sections [43]. It can be used to evalu-
ate the functional characteristics besides the geometric 
characteristics.

In this study, the epileptic seizures change the geom-
etry of the oscillation basin in the phase space, especially 
its expansion, so we employed this new space to evaluate 
the geometry of two-dimensional basins developed from 
the delayed phases of EEG segments. Figure 1A typi-
cally shows the new phase space reconstructed from an 
EEG segment of the O2 channel, including the collision 
points of the EEG trajectory with the radial linear Poin-
caré section. As shown in Figure 2, we can geometrically 
and functionally evaluate the electrical phases obtained 
from brain activity during the epileptic seizures by us-
ing the information obtained from this new space. In the 
following sections, we evaluated the 19-channel EEG 
segments taken from the epileptic patients by using the 
information of this new space.

The θ and τ parameters for establishing the new 
phase space

As shown in Figure 1, we must determine the angle 
between the radial Poincaré sections (θ) and delay (τ) 
for reconstructing the phase space sorted by the radial, 
linear Poincaré sections. For determining the θ param-
eter, we employed the average curve of θ effects on the 
area estimation error of the oscillation basin of trajec-
tories reconstructed from the EEG segments of the O2 
channel. Figure 1C represents this curve. We first cal-

culated the crossing points of the EEG trajectories from 
the radial, linear Poincaré sections in different θ angles 
(Figure 1A). Then, we calculated the oscillation basin of 
EEG trajectories in different θ angles according to the 
farthest crossing point in each Poincaré section as shown 
in Figure 1B. This computing is also done for the EEG 
trajectories reconstructed with seven different τ delays 
(0.007s, 0.015s, 0.031s, 0.039s, 0.097s, 0.127s, and 
0.234s), which is shown in Figure 1C. Finally, we drew 
the curve of θ effect on the area estimation error of the 
stated oscillation basin in the seven different delays.

For the area estimation error, we considered the area of 
the oscillation basin relevant to θ=1o as the main area of 
the basin. We estimated this error by subtracting this area 
and the area obtained for the different θ angles. General-
ly, θ=3o was a suitable value for extracting the geometric 
features of the oscillation basin of the EEG trajectories 
according to the average curve because this value could 
create an area estimation error of about 10%, which is 
almost tolerable in terms of engineering. Accordingly, 
we used this value for sorting the phase space.

In determining the τ parameter, because the maximum 
volume of oscillation basin in the phase space in evaluat-
ing the states of a system is essential, researchers usually 
use the linear independence technique of delayed phases 
for this purpose [45-47]. Nevertheless, these techniques, 
given that they indirectly intend to create the maximum 
volume of oscillation basin in the phase space, often 
have problems.

Figure 2. Brain maps are drawn from the negative logarithm value of P values obtained from the t test analysis for distinguish-
ing the normal from pre-ictal mode and normal from ictal mode by using the distribution of the area of oscillation basin of 
EEG trajectories
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In this work, we used the effects of different τ values on 
the area of oscillation basin of trajectories reconstructed 
from the EEG segments of O2 channels for fixing this 
problem and reaching the mentioned purpose (Figure 
1D) because it can simply estimate the area of the oscil-

lation basin of EEG trajectories according to the sorted 
phase space (Figure 1B). Therefore, we used the effect of 
different τ values on the area of the oscillation basin of 
EEG trajectories relevant to the O2 channel in the nor-
mal, pre-ictal, and ictal modes to determine the appropri-

Figure 3. EEG results

A: Regions considered for the feature extraction; B: The structure of the decision tree used in the genetic algorithm; C: The 
occurrence probability of accuracy based on the 100-fold cross-validation of genetic algorithm for distinguishing the normal, 
pre-ictal, and ictal modes; D: The occurrence probability of features in 100 optimal combinations obtained from the genetic 
algorithm.
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ate τ delay. Based on these average curves, we selected 
τ≈ 0.04s (Figure 1D) because this value could typically 
create a maximum area in the oscillation basin of EEG 
trajectories of the O2 channel for the three studied 
modes. In the following section, we use this value for re-
constructing the phase space and extracting the features.

Feature extraction and selection

Figure 2 shows two brain maps, which we drew ac-
cording to the negative logarithm value of P obtained 
from the t test analysis for distinguishing the normal 
from pre-ictal modes by using the distribution of the area 
of oscillation basin of EEG trajectories. As seen in these 
maps, the negative logarithm of P values in most EEG 
channels (19 channels) was more than 1.3 (-log10 (p)>-
log10 (0.05)), which indicates a significant difference 
in the stated distributions in normal, pre-ictal, and ictal 
modes. Therefore, according to the mentioned condi-
tions in the brain maps, we considered five regions for 
evaluating the epilepsy effects on all of the EEG chan-
nels, which is represented in Figure 3A. Based on these 
regions, we considered the average value of the feature 
in the EEG channels located on each region as the fea-
ture of that region after extracting the feature from the 
19 EEG channels. Features extracted from these regions 
include:

1. The area of the oscillation basin of EEG trajectory,

2. The perimeter of the oscillation basin of EEG trajec-
tory,

3. The arc length of the oscillation basin of EEG trajec-
tory in four regions of Cartesian coordinates,

4. The statistic of positive and negative crossing (col-
lision) points recorded on all of the linear Poincaré sec-
tions (Figure 1A). 

Features 1-3 in this set of features quantify the geom-
etry of the oscillation basin of sustainable and revers-
ible EEG trajectory [23, 34]. Feature 4 also quantifies 
the statistic of in-sets and out-sets relevant to the brain’s 
fixed points. It provides information relevant to the com-
pression, stretching, folding, and complexity of EEG tra-
jectories two-dimensional phase space. Therefore, these 
features can generally assess any variations in the ampli-
tude and frequency content of the brain’s electrical activ-
ities. Furthermore, given that three features of Shannon 
entropy, fractal Higuchi dimension, and EEG power in 
previous studies [29, 30, 48, 49] have been introduced as 
optimal features in the diagnosis of epilepsy, we added 
them to the feature vector to extract another part of infor-
mation of EEG signals, i.e., the information of amplitude 
and time complexity of EEG segments. After extracting 
these features, we normalized them according to their 
minimum and maximum in the training set (Equation 2).

3. FNormalize=
FRow-FMin

FMax-FMin

, where FMin and FMax are the maximum and mini-
mum values of feature in the training set, respectively. 
For selecting the optimal features, we used the Genetic 
Algorithm (GA) for evaluating the features because this 
algorithm, unlike the sequential search strategies such as 
sequential forward search, sequential backward search, 
and sequential floating search strategies, which only 
search a certain trajectory in the feature space [50-52], 
can evaluate and search the whole feature space for re-
ducing the computational load and eliminating the re-
dundant features. 

Table 1. The parameters used for the genetic algorithm

Parameter Amount/Type

Initial population 100

Selection 20%

Crossover 40%

Mutation 30%

Reproduction 10%

Genes 55

Fitting function DTSVM

Zarifiyan Irani Nezhad R, et al. Epilepsy Classification by Linear Poincaré Sections. Caspian J Neurol Sci. 2021; 7(2):60-73. 

http://cjns.gums.ac.ir/


67

April 2021, Volume 7, Issue 2, Number 25

Table 1 provides the values of parameters used for the 
genetic algorithm [43, 53]. We employed a Decision 
Tree based on the Support Vector Machine (DTSVM) 
with the Radial Basis Function (RBF) kernel for select-
ing the combination of features in the genetic algorithm. 
In other words, the genetic algorithm used the accuracy 
of the decision tree shown in Figure 3B for finding the 
optimal combination of features. In addition, as specified 
in Table 1, the genetic algorithm used four methods of 
selection, crossover, mutation, and reproduction to gen-
erate its generation. The number of genes per chromo-
some was also equal to the number of extracted features.

Decision tree based on the support vector machine

The Support Vector Machine (SVM) is now a unique 
classifier in the field of pattern identification because it 
finds the primary minimum in the error function [54], 
and does not usually suffer from a later curse in high di-
mensions [55]. Nevertheless, this classifier only distin-
guishes two classes from each other and should be used 
the one-versus-one and one-versus-all methods [56] to 
distinguish more than two classes. These methods also 
produce unknown answers, which is a fundamental 
problem. 

Since we separated the three classes (normal, pre-ictal, 
and ictal), we used the decision tree based on the one-
versus-one and one-versus-all methods of the SVM for 
preventing the unknown answers. Figure 3B is the struc-
ture of the proposed decision tree, which we employed as 
a selection criterion for the GA. As shown, we used both 
of the one-versus-one and one-versus-all methods in the 

structure of the decision tree to separate the classes. We 
first separated the ictal class from the other two classes 
(normal and pre-ictal) using the one-versus-all method in 
the tree. Finally, we separated the remaining two classes 
by using the one-versus-one method.

Therefore, this combination generally solves the prob-
lem of the unknown answers. In the next section, we 
present the results of evaluating the features using this 
proposed decision tree and the effect of the input popula-
tion (training and testing sets) on the classification algo-
rithm.

Results

Table 2 provides the 100-fold validation results of the 
GA for the training and testing sets obtained from the 
hold-out method with the division rate of 40% for the 
testing set. Although the GA could improve the classi-
fication accuracy of normal, pre-ictal, ictal modes and 
the computational load by finding an optimal combina-
tion in the feature space, the results of Table 2 show that 
the input population not only significantly affected the 
parameters of accuracy, specificity, and sensitivity, but it 
also affected the arrangement of optimal combinations.

Figures 3C and 3D provide the occurrence probability 
of accuracy and features based on the 100 optimal com-
binations found by the GA for separating three studied 
modes and confirm this issue. As shown in both parts of 
Figure 3C and 3D, the change of input population caused 
an accuracy distribution of 91.05%-98.12% in 100 opti-
mal combinations of GA for separating the three modes 
and a different arrangement in the optimal combinations 
of features. Therefore, this condition indicates that the 
distribution of the input population has a significant ef-
fect on separating epilepsy and cannot be overlooked.

On the other hand, as shown in Figure 3D, different 
features appear in the different optimal combinations 
of features obtained from the GA. Of course, some of 
the features especially features 7 and 9, which are re-
spectively the entropy of EEG signals and the statistic of 
positive crossing points in the frontal and right parietal 
lobes, had more probability for the occurrence. It means 
that they are more efficient for distinguishing epilepsy. 
Based on the results of Figure 3, the feature extracted 
from the geometry of the oscillation basin also had a 
high probability, and they had appeared more in the opti-
mal combinations, although the entropy of EEG signals 
in the frontal lobe could have the highest probability in 
these combinations.
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Figure 4. Accuracy distribution in the previous studies for 
diagnosing the epileptic seizures and accuracy distribution 
obtained from the proposed technique against changing the 
input population
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Although comparing the separation of normal, pre-ic-
tal, and ictal modes in this study with the results of pre-
vious studies, which had similar database (non-invasive 
EEG), may be unfair due to the separation of the two 
classes in the previous studies, their comparison indi-
cates that the proposed technique has sufficient capabil-
ity to separate three modes. Figure 4 shows the accu-
racy distribution in the previous studies for diagnosing 
epileptic seizures and the accuracy distribution obtained 
from the proposed technique against changing the input 
population. It is also another confirmation for this topic. 
It represents that the three-class algorithm proposed for 
epilepsy detection had an accuracy of about 94.84%, 
which was higher than the average accuracy of the two 
classes reported by previous studies. Besides, comparing 
the results of sensitivity to the diagnosis of epileptic sei-
zures in the proposed method (Table 2) with the results 
of previous algorithms, especially tracking-based algo-
rithms (Three class diagnosis) in Table 3, also shows that 
features extracted from the geometry of oscillation basin 
of EEG trajectories in the phase space contain valuable 
information. Therefore, it may upgrade classifiers devel-
oped for diagnosing epilepsy. 

Discussion

As previously stated, epileptic seizures are an uncon-
trolled storm of electrical activity in the nervous system, 
which leads to activities outside the normal range in 
EEG signals, so that these signals, especially the invasive 
EEG signals, are usually accompanied by spike-shape 
variations [67]. Therefore, the spike-shape variations are 
the origin of changes in the frequency content of EEG 
signals obtained during epileptic seizures. So, research-
ers often use them to assess the conditions of patients 
with epilepsy and provide techniques to detect this ab-
normality [75]. Some researchers also reported that this 
disorder usually has the greatest impact on the content 
of low-frequency bands, especially the theta and alpha 
bands [76]. In other words, researchers have revealed 
in their reports that the nervous system, due to one of 

the intrinsic characteristics of its activities, i.e., the 1/f 
frequency spectrum, can only create considerable varia-
tions by using the low-frequency activities [77]. Accord-
ingly, one of the characteristics associated with epileptic 
seizures is the increase in the volume of the oscillation 
basin of trajectories reconstructed from brain activities.

Remarkably, our assessment on the area of   the oscil-
lation basin of trajectories reconstructed from the EEG 
segments of normal, pre-ictal, and ictal modes indicated 
that epilepsy increases the volume of oscillation basin of 
EEG trajectories at different dimensions of phase space 
(Figure 1D) so that this increasing also happens in the 
spaces reconstructed by different time delays. Therefore, 
this status shows that the volume of the oscillation ba-
sin of EEG trajectories contains an essential part of the 
information generated by the nonlinear dynamics of the 
nervous system. Thus, it can be used to identify abnor-
mal behaviors in the brain system, such as epilepsy. In 
this regard, evaluating the area of t he aforementioned 
basin in both of the normal and pre-ictal modes as well 
as normal and ictal modes by using the t test analysis was 
coupled by significant differences in most EEG channels, 
especially occipital, frontal and central regions, which is 
a confirmation on this issue. Evaluating the geometric 
features of these basins by using the GA also illustrated 
that the geometry of oscillation basin of trajectories re-
constructed of the EEG segments during the epilepsy 
corresponds generally with the remarkable changes. Ac-
cordingly, its geometric features had a high occurrence 
probability in the optimal combinations selected by the 
genetic algorithm (Figure 3D). In other words, the com-
bination of these features with the optimal features of 
previous research studies could make a significant differ-
ence in separating the three modes of epileptic patients. 

It was interesting that the evaluation of optimal-feature 
combinations selected by the g e netic algorithm along 
with the entropy of EEG signals, indicated that the sta-
tistics of positive and negati v e crossing points, which 
evaluate the in-sets and out-sets of brain’s fixed points 

Table 2. The 100-fold cross-validation results of the genetic algorithm for the training and testing sets 

Set
Mean±SD

The Length of
Optimal CombinationAccuracy (%) Specificity (%)

Sensitivity (%)
Pre-Ictal Ictal

Train

Test

99.85±0.07

94.84±1.44

99.76±0.09

96.58±1.88

99.45±0.23

90.62±6.83

99.87±0.04

98.34±1.25
16.43±2.93
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Table 3. Non-invasive EEG-based studies for diagnosing the epileptic seizures

%
ClassesMethodsPatientsYearAuthors

SpecificitySensitivityAccuracy 

94.8682.5572.922VMD+SF+SSE+PCA232018Das et al. [57]

NRNR80.162WSF+LDA232011Rafiuddin et al. [58]

88.3490.6288.762MDWT+DM202019Sadeghzadeh et al. [59]

10083.691.82DWT+RVOE +NCOV+ LDA52012Khan et al. [60]

92.8991.7192.32DWT+WSF+SVM182017Chen et al. [61]

94.2791.5592.912SDBDA+SVM232018Zabihi et al. [38]

93.1691.91942WPD+ETTL-TSK-FS222018Deng et al. [62]

98.0191.6494.822SVCF+SVM232015Elmahdy et al. [63]

99.697.999.42EWT+JIAAF+ RF232017Bhattacharyya et al. [64]

99.6298.3699.452TWD+SF+HOS+KNN(lDA)182018Chandel et al. [65]

99.71897.16899.622SGM+ SVM222020Jiang et al. [5]

NR91.6NR2TFL+IP+GA161998Osorio et al. [66]

98.5NRNR2DWT+linear classifier232014Ahammad et al. [67]

97.7470.19NR22DMTF+SVM232015Samiee et al. [4]

NR91.8–96.6NRTrackingPS+DOFRO-OSF+SVM192017Sharif & Jafari [39]

NR25-70NRTrackingEMD+PCF+TC102014Zheng et al. [68]

NR90NRTrackingNLF+TC+RBD212014Aarabi & He [32]

NR67–100 NRTrackingREPF+TC212014Eftekhar et al. [69]

NR89–93.5NRTrackingUF+SVM212014Moghim & Corne [70]

NR72.7NRTrackingSpike rate+TC212013Li et al. [71]

NR90.2NRTrackingNLF+TC+RBD112012Aarabi & He [72]

NR86–95NRTrackingTD(5)U/MC+SVM192012Williamson et al. [73]

NR98.3NRTrackingUSPF+SVM182011Park et al. [74]

VMD: Variational Mode Decomposition; SF: Statistical Features; SSE: Spectral Sample Entropy; PCA: Principal Component 
Analysis; WSF: Wavelet + Statistical Features; LDA: Linear Discriminant Analysis; MDWT: Making Decision With Thresh-
olding; DM: Decision-Making; DWT: Discrete Wavelet Transform; RVOE: Relative Values of Energy; NCOV: Normalized 
Coefficient of Variation; SVM: Support Vector Machine; SDBDA: Signal Derived Based Dictionary Approach; WPD: Wavelet 
Packet Decomposition; ETTL-TSK-FS: Enhanced Transductive Transfer Learning Takagi–Sugeno–Kang Fuzzy System; SVCF: 
Singular Value + Classical Features; EWT: Empirical Wavelet Transform; JIAAF: Joint Instantaneous Amplitudes and Frequen-
cies; RF, Random Forest; TWD: Triadic Wavelet Decomposition; KNN: K-Nearest Neighbors; SGM: Symplectic Geometry 
Decomposition; TFL, Time-Frequency Localization; IP: Image Processing; GA: Generic Algorithm; 2DMTF: 2D Mapping and 
Textural Features; PS: Phase Space; DOFRO-PSF: Distribution of Fuzzy Rules on Optimized Poincaré Samples Features; EMD: 
Empirical Mode Decomposition; PCF: Phase Coherence Features; TC: Threshold Crossing; NLF: Nonlinear Features; RBD: 
Rule Based Decision; REPF: Repeating EEG Patterns Features; UF: Univariate Features; USPF: Univariate Spectral Power Fea-
tures; TDU/MC: Time Delayed Univariate/Multivariate Correlations.
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recorded on radial, linear Poincaré sections, had the high 
occurrence probability in the optimal combinations of 
the GA. This high occurrence probability in the in-sets 
and out-sets, with the probability that the EEG signal is a 
complex process produced by the homoclinic and hetero-
clinic orbits [44], emphasizes this issue that epilepsy can 
be a factor for changing the homoclinic and heteroclinic 
intersections and orbits. Since epilepsy seizures increase 
energy consumption, these disorders as a mode diverge 
the activities of the nervous system and can expand the 
homoclinic and heteroclinic intersections and orbits cre-
ated by the in-sets and out-set of the brain’s fixed points.

Conclusion

Distinguishing the normal, pre-ictal, and ictal modes 
by using the geometric features extracted from the phase 
space sorted by Poincaré sections generally indicated 
that the epileptic seizures increase the oscillation basin 
of EEG trajectory. Accordingly, developing the deci-
sion tree based on the SVM with the geometric features 
selected by the GA provides significant accuracy for 
diagnosing the three mentioned modes, and confirms 
the stated topic. However, the findings of this research 
indicate that the diagnosis of epilepsy in online clinical 
applications, which their statistical population, requires 
a diagnostic technique based on several EEG segments.
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